Fariba Alimohammadi, M. Rasekh, Amir Hossein Afkari Sayyah, Y. Abbaspour‐Gilandeh, H. Karami, Vali Rasooli Sharabiani, Ambra Fioravanti, M. Gancarz, P. Findura, D. Kwaśniewski
{"title":"高光谱成像结合多元分析和人工智能对玉米粒的分类","authors":"Fariba Alimohammadi, M. Rasekh, Amir Hossein Afkari Sayyah, Y. Abbaspour‐Gilandeh, H. Karami, Vali Rasooli Sharabiani, Ambra Fioravanti, M. Gancarz, P. Findura, D. Kwaśniewski","doi":"10.31545/intagr/147227","DOIUrl":null,"url":null,"abstract":". Maize ( Zea mays ) is one of the key crops in the world, taking third place after wheat and rice in terms of cultivated area. This study aimed to demonstrate the potential of non-destructive hyperspectral imaging in the wavelength range of 400-1000 nm to discriminate between and classify maize kernels in three cultivars by using non-destructive hyperspectral imaging in the wavelength range of 400-1000 nm. Three cultivars of maize kernels were exposed to hyperspectral imaging with 20 rep -lications. Predictor variables included 28 intensities of reflection wave for spectral imaging and 4 variables in terms of the weight, length, width, and thickness of a single kernel. The classification was successfully performed through Linear Discriminant Analysis and Artificial Neural Network methods, taking into account 32, 15, and 5 predictor variables. According to the results, Linear Discriminant Analysis with 32 predictor variables is characterized by a high degree of accuracy (95%). The most important predictor variables included the reflection wave intensity of the third peak, the wavelength intensity of 490 nm, the wavelength intensity of 580 nm, and the weight and thickness of a single kernel.","PeriodicalId":13959,"journal":{"name":"International Agrophysics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Hyperspectral imaging coupled with multivariate analysis and artificial intelligence\\nto the classification of maize kernels\",\"authors\":\"Fariba Alimohammadi, M. Rasekh, Amir Hossein Afkari Sayyah, Y. Abbaspour‐Gilandeh, H. Karami, Vali Rasooli Sharabiani, Ambra Fioravanti, M. Gancarz, P. Findura, D. Kwaśniewski\",\"doi\":\"10.31545/intagr/147227\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Maize ( Zea mays ) is one of the key crops in the world, taking third place after wheat and rice in terms of cultivated area. This study aimed to demonstrate the potential of non-destructive hyperspectral imaging in the wavelength range of 400-1000 nm to discriminate between and classify maize kernels in three cultivars by using non-destructive hyperspectral imaging in the wavelength range of 400-1000 nm. Three cultivars of maize kernels were exposed to hyperspectral imaging with 20 rep -lications. Predictor variables included 28 intensities of reflection wave for spectral imaging and 4 variables in terms of the weight, length, width, and thickness of a single kernel. The classification was successfully performed through Linear Discriminant Analysis and Artificial Neural Network methods, taking into account 32, 15, and 5 predictor variables. According to the results, Linear Discriminant Analysis with 32 predictor variables is characterized by a high degree of accuracy (95%). The most important predictor variables included the reflection wave intensity of the third peak, the wavelength intensity of 490 nm, the wavelength intensity of 580 nm, and the weight and thickness of a single kernel.\",\"PeriodicalId\":13959,\"journal\":{\"name\":\"International Agrophysics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-04-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Agrophysics\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.31545/intagr/147227\",\"RegionNum\":4,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Agrophysics","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.31545/intagr/147227","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
Hyperspectral imaging coupled with multivariate analysis and artificial intelligence
to the classification of maize kernels
. Maize ( Zea mays ) is one of the key crops in the world, taking third place after wheat and rice in terms of cultivated area. This study aimed to demonstrate the potential of non-destructive hyperspectral imaging in the wavelength range of 400-1000 nm to discriminate between and classify maize kernels in three cultivars by using non-destructive hyperspectral imaging in the wavelength range of 400-1000 nm. Three cultivars of maize kernels were exposed to hyperspectral imaging with 20 rep -lications. Predictor variables included 28 intensities of reflection wave for spectral imaging and 4 variables in terms of the weight, length, width, and thickness of a single kernel. The classification was successfully performed through Linear Discriminant Analysis and Artificial Neural Network methods, taking into account 32, 15, and 5 predictor variables. According to the results, Linear Discriminant Analysis with 32 predictor variables is characterized by a high degree of accuracy (95%). The most important predictor variables included the reflection wave intensity of the third peak, the wavelength intensity of 490 nm, the wavelength intensity of 580 nm, and the weight and thickness of a single kernel.
期刊介绍:
The journal is focused on the soil-plant-atmosphere system. The journal publishes original research and review papers on any subject regarding soil, plant and atmosphere and the interface in between. Manuscripts on postharvest processing and quality of crops are also welcomed.
Particularly the journal is focused on the following areas:
implications of agricultural land use, soil management and climate change on production of biomass and renewable energy, soil structure, cycling of carbon, water, heat and nutrients, biota, greenhouse gases and environment,
soil-plant-atmosphere continuum and ways of its regulation to increase efficiency of water, energy and chemicals in agriculture,
postharvest management and processing of agricultural and horticultural products in relation to food quality and safety,
mathematical modeling of physical processes affecting environment quality, plant production and postharvest processing,
advances in sensors and communication devices to measure and collect information about physical conditions in agricultural and natural environments.
Papers accepted in the International Agrophysics should reveal substantial novelty and include thoughtful physical, biological and chemical interpretation and accurate description of the methods used.
All manuscripts are initially checked on topic suitability and linguistic quality.