具有俘获势的p-Laplacian方程的归一化解

IF 3.2 1区 数学 Q1 MATHEMATICS
Chao Wang, Juntao Sun
{"title":"具有俘获势的p-Laplacian方程的归一化解","authors":"Chao Wang, Juntao Sun","doi":"10.1515/anona-2022-0291","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we are concerned with normalized solutions for the p p -Laplacian equation with a trapping potential and L r {L}^{r} -supercritical growth, where r = p r=p or 2 . 2. The solutions correspond to critical points of the underlying energy functional subject to the L r {L}^{r} -norm constraint, namely, ∫ R N ∣ u ∣ r d x = c {\\int }_{{{\\mathbb{R}}}^{N}}| u{| }^{r}{\\rm{d}}x=c for given c > 0 . c\\gt 0. When r = p , r=p, we show that such problem has a ground state with positive energy for c c small enough. When r = 2 , r=2, we show that such problem has at least two solutions both with positive energy, which one is a ground state and the other one is a high-energy solution.","PeriodicalId":51301,"journal":{"name":"Advances in Nonlinear Analysis","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Normalized solutions for the p-Laplacian equation with a trapping potential\",\"authors\":\"Chao Wang, Juntao Sun\",\"doi\":\"10.1515/anona-2022-0291\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we are concerned with normalized solutions for the p p -Laplacian equation with a trapping potential and L r {L}^{r} -supercritical growth, where r = p r=p or 2 . 2. The solutions correspond to critical points of the underlying energy functional subject to the L r {L}^{r} -norm constraint, namely, ∫ R N ∣ u ∣ r d x = c {\\\\int }_{{{\\\\mathbb{R}}}^{N}}| u{| }^{r}{\\\\rm{d}}x=c for given c > 0 . c\\\\gt 0. When r = p , r=p, we show that such problem has a ground state with positive energy for c c small enough. When r = 2 , r=2, we show that such problem has at least two solutions both with positive energy, which one is a ground state and the other one is a high-energy solution.\",\"PeriodicalId\":51301,\"journal\":{\"name\":\"Advances in Nonlinear Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Nonlinear Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0291\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Nonlinear Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0291","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

摘要

摘要在本文中,我们讨论了具有俘获势和Lr{L}^{r}-超临界生长的p-拉普拉斯方程的归一化解,其中r=p r=p或2。2.这些解对应于Lr{L}^{r}-范数约束下的潜在能量泛函主体的临界点,即,对于给定的c>0,当给定c>0时,ξr NÜuÜr d x=c。c\gt 0。当r=p,r=p时,我们证明了对于c c足够小,这样的问题具有正能量的基态。当r=2,r=2时,我们证明了这类问题至少有两个解都是正能量的,一个是基态,另一个是高能解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized solutions for the p-Laplacian equation with a trapping potential
Abstract In this article, we are concerned with normalized solutions for the p p -Laplacian equation with a trapping potential and L r {L}^{r} -supercritical growth, where r = p r=p or 2 . 2. The solutions correspond to critical points of the underlying energy functional subject to the L r {L}^{r} -norm constraint, namely, ∫ R N ∣ u ∣ r d x = c {\int }_{{{\mathbb{R}}}^{N}}| u{| }^{r}{\rm{d}}x=c for given c > 0 . c\gt 0. When r = p , r=p, we show that such problem has a ground state with positive energy for c c small enough. When r = 2 , r=2, we show that such problem has at least two solutions both with positive energy, which one is a ground state and the other one is a high-energy solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Nonlinear Analysis
Advances in Nonlinear Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
6.00
自引率
9.50%
发文量
60
审稿时长
30 weeks
期刊介绍: Advances in Nonlinear Analysis (ANONA) aims to publish selected research contributions devoted to nonlinear problems coming from different areas, with particular reference to those introducing new techniques capable of solving a wide range of problems. The Journal focuses on papers that address significant problems in pure and applied nonlinear analysis. ANONA seeks to present the most significant advances in this field to a wide readership, including researchers and graduate students in mathematics, physics, and engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信