向列矩阵中结点和链路的拓扑结构

IF 0.7 Q3 CRYSTALLOGRAPHY
Thomas Machon
{"title":"向列矩阵中结点和链路的拓扑结构","authors":"Thomas Machon","doi":"10.1080/1358314X.2019.1681113","DOIUrl":null,"url":null,"abstract":"ABSTRACT We review some our results concerning the topology of knotted and linked defects in nematic liquid crystals. We discuss the global topological classification of nematic textures with defects, showing how knotted and linked defect lines have a finite number of ‘internal states’, counted by the Alexander polynomial of the knot or link. We then give interpretations of these states in terms of umbilic lines, which we also introduce, as well as planar textures. We show how Milnor polynomials can be used to give explicit constructions of these textures. Finally, we discuss some open problems raised by this work.","PeriodicalId":18110,"journal":{"name":"Liquid Crystals Today","volume":"28 1","pages":"58 - 67"},"PeriodicalIF":0.7000,"publicationDate":"2019-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/1358314X.2019.1681113","citationCount":"5","resultStr":"{\"title\":\"The topology of knots and links in nematics\",\"authors\":\"Thomas Machon\",\"doi\":\"10.1080/1358314X.2019.1681113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT We review some our results concerning the topology of knotted and linked defects in nematic liquid crystals. We discuss the global topological classification of nematic textures with defects, showing how knotted and linked defect lines have a finite number of ‘internal states’, counted by the Alexander polynomial of the knot or link. We then give interpretations of these states in terms of umbilic lines, which we also introduce, as well as planar textures. We show how Milnor polynomials can be used to give explicit constructions of these textures. Finally, we discuss some open problems raised by this work.\",\"PeriodicalId\":18110,\"journal\":{\"name\":\"Liquid Crystals Today\",\"volume\":\"28 1\",\"pages\":\"58 - 67\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2019-07-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/1358314X.2019.1681113\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Liquid Crystals Today\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/1358314X.2019.1681113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Liquid Crystals Today","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1358314X.2019.1681113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
引用次数: 5

摘要

摘要:我们回顾了一些关于向列液晶中结状和连接缺陷拓扑结构的研究结果。我们讨论了具有缺陷的向列织构的全局拓扑分类,展示了结和连接的缺陷线如何具有有限数量的“内部状态”,由结或连接的亚历山大多项式计算。然后我们用脐带线来解释这些状态,我们也引入了脐带线,以及平面纹理。我们展示了如何使用米尔诺多项式来给出这些纹理的明确结构。最后,我们讨论了本研究提出的一些开放性问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The topology of knots and links in nematics
ABSTRACT We review some our results concerning the topology of knotted and linked defects in nematic liquid crystals. We discuss the global topological classification of nematic textures with defects, showing how knotted and linked defect lines have a finite number of ‘internal states’, counted by the Alexander polynomial of the knot or link. We then give interpretations of these states in terms of umbilic lines, which we also introduce, as well as planar textures. We show how Milnor polynomials can be used to give explicit constructions of these textures. Finally, we discuss some open problems raised by this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Liquid Crystals Today
Liquid Crystals Today CRYSTALLOGRAPHY-
CiteScore
2.80
自引率
0.00%
发文量
19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信