A. Tran, Lars Bernspång, M. Veljković, C. Rebelo, L. Silva
{"title":"冷成型高强度角钢的抗力","authors":"A. Tran, Lars Bernspång, M. Veljković, C. Rebelo, L. Silva","doi":"10.18057/ijasc.2019.15.3.4","DOIUrl":null,"url":null,"abstract":"This paper describes a study of the behaviour of cold-formed high strength steel angles. Thirty-six specimens with different cold-formed angles (90°, 100°, 120°, 140°, 160°, and 170°) and different thicknesses (4 mm and 6 mm) were considered. The initial geometric imperfections of the specimens were determined using the 3D laser scanning method. The magnitudes of these geometric imperfections for torsional and torsional-flexural buckling and flexural buckling analyses were proposed. The commercial finite element analysis (FEA) programme ABAQUS with shell elements S4R was used for finite element analyses. Different material strengths in corner and flat parts along with different proof stresses (0.2%, 0.01%, and 0.006%) were considered in the numerical models. The experimental and FEA results showed good agreement. Influence of cold-formed angle on non-dimensional slenderness and reduction factor curves of the 4 mm thick columns with 90° and 120° cold-formed angles was analysed.","PeriodicalId":56332,"journal":{"name":"Advanced Steel Construction","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2019-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"RESISTANCE OF COLD FORMED HIGH STRENGTH STEEL ANGLES\",\"authors\":\"A. Tran, Lars Bernspång, M. Veljković, C. Rebelo, L. Silva\",\"doi\":\"10.18057/ijasc.2019.15.3.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a study of the behaviour of cold-formed high strength steel angles. Thirty-six specimens with different cold-formed angles (90°, 100°, 120°, 140°, 160°, and 170°) and different thicknesses (4 mm and 6 mm) were considered. The initial geometric imperfections of the specimens were determined using the 3D laser scanning method. The magnitudes of these geometric imperfections for torsional and torsional-flexural buckling and flexural buckling analyses were proposed. The commercial finite element analysis (FEA) programme ABAQUS with shell elements S4R was used for finite element analyses. Different material strengths in corner and flat parts along with different proof stresses (0.2%, 0.01%, and 0.006%) were considered in the numerical models. The experimental and FEA results showed good agreement. Influence of cold-formed angle on non-dimensional slenderness and reduction factor curves of the 4 mm thick columns with 90° and 120° cold-formed angles was analysed.\",\"PeriodicalId\":56332,\"journal\":{\"name\":\"Advanced Steel Construction\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2019-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Steel Construction\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.18057/ijasc.2019.15.3.4\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Steel Construction","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.18057/ijasc.2019.15.3.4","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
RESISTANCE OF COLD FORMED HIGH STRENGTH STEEL ANGLES
This paper describes a study of the behaviour of cold-formed high strength steel angles. Thirty-six specimens with different cold-formed angles (90°, 100°, 120°, 140°, 160°, and 170°) and different thicknesses (4 mm and 6 mm) were considered. The initial geometric imperfections of the specimens were determined using the 3D laser scanning method. The magnitudes of these geometric imperfections for torsional and torsional-flexural buckling and flexural buckling analyses were proposed. The commercial finite element analysis (FEA) programme ABAQUS with shell elements S4R was used for finite element analyses. Different material strengths in corner and flat parts along with different proof stresses (0.2%, 0.01%, and 0.006%) were considered in the numerical models. The experimental and FEA results showed good agreement. Influence of cold-formed angle on non-dimensional slenderness and reduction factor curves of the 4 mm thick columns with 90° and 120° cold-formed angles was analysed.
期刊介绍:
The International Journal of Advanced Steel Construction provides a platform for the publication and rapid dissemination of original and up-to-date research and technological developments in steel construction, design and analysis. Scope of research papers published in this journal includes but is not limited to theoretical and experimental research on elements, assemblages, systems, material, design philosophy and codification, standards, fabrication, projects of innovative nature and computer techniques. The journal is specifically tailored to channel the exchange of technological know-how between researchers and practitioners. Contributions from all aspects related to the recent developments of advanced steel construction are welcome.