具有Puiseux逆积分因子的退化单点奇异点的poincar映射

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
I. A. García, J. Giné
{"title":"具有Puiseux逆积分因子的退化单点奇异点的poincar<s:1>映射","authors":"I. A. García, J. Giné","doi":"10.1515/anona-2022-0314","DOIUrl":null,"url":null,"abstract":"Abstract We consider analytic families of planar vector fields depending analytically on the parameters in Λ \\Lambda that guarantee the existence of a (may be degenerate and with characteristic directions) monodromic singularity. We characterize the structure of the asymptotic Dulac series of the Poincaré map associated to the singularity when the family possesses a Puiseux inverse integrating factor in terms of its multiplicity and index. This characterization is only valid in a restricted monodromic parameter space Λ \\ Λ ∗ \\Lambda \\backslash {\\Lambda }^{\\ast } associated to the nonexistence of local curves with zero angular speed. As a byproduct, we are able to study the center-focus problem (under the assumption of the existence of some Cauchy principal values) in very degenerated cases where no other tools are available. We illustrate the theory with several nontrivial examples.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Poincaré map of degenerate monodromic singularities with Puiseux inverse integrating factor\",\"authors\":\"I. A. García, J. Giné\",\"doi\":\"10.1515/anona-2022-0314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We consider analytic families of planar vector fields depending analytically on the parameters in Λ \\\\Lambda that guarantee the existence of a (may be degenerate and with characteristic directions) monodromic singularity. We characterize the structure of the asymptotic Dulac series of the Poincaré map associated to the singularity when the family possesses a Puiseux inverse integrating factor in terms of its multiplicity and index. This characterization is only valid in a restricted monodromic parameter space Λ \\\\ Λ ∗ \\\\Lambda \\\\backslash {\\\\Lambda }^{\\\\ast } associated to the nonexistence of local curves with zero angular speed. As a byproduct, we are able to study the center-focus problem (under the assumption of the existence of some Cauchy principal values) in very degenerated cases where no other tools are available. We illustrate the theory with several nontrivial examples.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/anona-2022-0314\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/anona-2022-0314","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

摘要考虑了平面向量场的解析族,这些解析族依赖于Λ \Lambda中的参数,它们保证了一个(可能是简并的,具有特征方向的)单点奇点的存在。当族具有一个Puiseux逆积分因子时,我们刻画了与奇点相关的poincar映射的渐近Dulac级数的结构。此表征仅在与不存在零角速度的局部曲线相关的受限单参数空间Λ \ Λ∗\Lambda \反斜线{\Lambda}^{\ast}中有效。作为一个副产品,我们能够在没有其他工具可用的非常简并的情况下研究中心焦点问题(假设存在一些柯西主值)。我们用几个重要的例子来说明这个理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Poincaré map of degenerate monodromic singularities with Puiseux inverse integrating factor
Abstract We consider analytic families of planar vector fields depending analytically on the parameters in Λ \Lambda that guarantee the existence of a (may be degenerate and with characteristic directions) monodromic singularity. We characterize the structure of the asymptotic Dulac series of the Poincaré map associated to the singularity when the family possesses a Puiseux inverse integrating factor in terms of its multiplicity and index. This characterization is only valid in a restricted monodromic parameter space Λ \ Λ ∗ \Lambda \backslash {\Lambda }^{\ast } associated to the nonexistence of local curves with zero angular speed. As a byproduct, we are able to study the center-focus problem (under the assumption of the existence of some Cauchy principal values) in very degenerated cases where no other tools are available. We illustrate the theory with several nontrivial examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信