非平凡分数噪声驱动随机演化方程集值动力系统的随机吸引子

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
M. Garrido-Atienza, B. Schmalfuss, J. Valero
{"title":"非平凡分数噪声驱动随机演化方程集值动力系统的随机吸引子","authors":"M. Garrido-Atienza, B. Schmalfuss, J. Valero","doi":"10.1142/s0219493722400184","DOIUrl":null,"url":null,"abstract":"We consider a stochastic evolution equation driven by a fractional Brownian motion in a separable Hilbert space with Hurst parameter [Formula: see text]. The coefficient in front of the noise is in general nonlinear. The related integral is a pathwise integral defined by fractional derivatives. The nonlinear coefficients of this equation satisfy weak conditions ensuring only existence of a solution but not uniqueness. This equation generates then a multivalued random dynamical system. We prove the existence of a random attractor for this system.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2022-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Random attractors for setvalued dynamical systems for stochastic evolution equations driven by a nontrivial fractional noise\",\"authors\":\"M. Garrido-Atienza, B. Schmalfuss, J. Valero\",\"doi\":\"10.1142/s0219493722400184\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a stochastic evolution equation driven by a fractional Brownian motion in a separable Hilbert space with Hurst parameter [Formula: see text]. The coefficient in front of the noise is in general nonlinear. The related integral is a pathwise integral defined by fractional derivatives. The nonlinear coefficients of this equation satisfy weak conditions ensuring only existence of a solution but not uniqueness. This equation generates then a multivalued random dynamical system. We prove the existence of a random attractor for this system.\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493722400184\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493722400184","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑一个由分数布朗运动驱动的随机演化方程在可分离的希尔伯特空间与赫斯特参数[公式:见文本]。噪声前的系数一般是非线性的。相关积分是由分数阶导数定义的路径积分。该方程的非线性系数满足仅解存在而不唯一的弱条件。该方程生成了一个多值随机动力系统。证明了该系统的随机吸引子的存在性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random attractors for setvalued dynamical systems for stochastic evolution equations driven by a nontrivial fractional noise
We consider a stochastic evolution equation driven by a fractional Brownian motion in a separable Hilbert space with Hurst parameter [Formula: see text]. The coefficient in front of the noise is in general nonlinear. The related integral is a pathwise integral defined by fractional derivatives. The nonlinear coefficients of this equation satisfy weak conditions ensuring only existence of a solution but not uniqueness. This equation generates then a multivalued random dynamical system. We prove the existence of a random attractor for this system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信