张量中心战争II:熵不确定性建模

V. Ivancevic, D. Reid, P. Pourbeik
{"title":"张量中心战争II:熵不确定性建模","authors":"V. Ivancevic, D. Reid, P. Pourbeik","doi":"10.4236/ica.2018.92003","DOIUrl":null,"url":null,"abstract":"In the first paper of the tensor-centric warfare (TCW) series [1], we proposed a tensor model of combat generalizing earlier Lanchester-type systems with a particular emphasis on contemporary military thinking, including the distributed C4ISR system (Command, Control, Communications, Computing, Intelligence, Surveillance and Reconnaissance). In the present paper, we extend this initial tensor combat model with entropic Lie-derivative machinery in order to capture some aspects of this deep uncertainty, while, in the process, formalizing into our model military notion of symmetry and asymmetry in warfare as a commutator, also known as a Lie bracket. In doing so, we have sought to shift the question from the prediction of outcomes of combat, upon which previous combat models such as the Lanchester-type equations have been typically constructed, towards determining the uncertainty outcomes, using a rigorous analytical basis.","PeriodicalId":62904,"journal":{"name":"智能控制与自动化(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Tensor-Centric Warfare II: Entropic Uncertainty Modeling\",\"authors\":\"V. Ivancevic, D. Reid, P. Pourbeik\",\"doi\":\"10.4236/ica.2018.92003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the first paper of the tensor-centric warfare (TCW) series [1], we proposed a tensor model of combat generalizing earlier Lanchester-type systems with a particular emphasis on contemporary military thinking, including the distributed C4ISR system (Command, Control, Communications, Computing, Intelligence, Surveillance and Reconnaissance). In the present paper, we extend this initial tensor combat model with entropic Lie-derivative machinery in order to capture some aspects of this deep uncertainty, while, in the process, formalizing into our model military notion of symmetry and asymmetry in warfare as a commutator, also known as a Lie bracket. In doing so, we have sought to shift the question from the prediction of outcomes of combat, upon which previous combat models such as the Lanchester-type equations have been typically constructed, towards determining the uncertainty outcomes, using a rigorous analytical basis.\",\"PeriodicalId\":62904,\"journal\":{\"name\":\"智能控制与自动化(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能控制与自动化(英文)\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://doi.org/10.4236/ica.2018.92003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能控制与自动化(英文)","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.4236/ica.2018.92003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在张量中心战(TCW)系列[1]的第一篇论文中,我们提出了一个张量作战模型,该模型推广了早期的兰彻斯特型系统,特别强调当代军事思想,包括分布式C4ISR系统(指挥、控制、通信、计算、情报、监视和侦察)。在本文中,我们用熵李导数机制扩展了这个初始张量作战模型,以捕捉这种深度不确定性的某些方面,同时在这个过程中,将战争中对称和不对称的军事概念正式化为我们的模型,称为交换子,也称为李括号。在这样做的过程中,我们试图将问题从作战结果的预测转移到使用严格的分析基础来确定不确定性结果,以前的作战模型(如Lanchester型方程)通常是基于这种预测构建的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tensor-Centric Warfare II: Entropic Uncertainty Modeling
In the first paper of the tensor-centric warfare (TCW) series [1], we proposed a tensor model of combat generalizing earlier Lanchester-type systems with a particular emphasis on contemporary military thinking, including the distributed C4ISR system (Command, Control, Communications, Computing, Intelligence, Surveillance and Reconnaissance). In the present paper, we extend this initial tensor combat model with entropic Lie-derivative machinery in order to capture some aspects of this deep uncertainty, while, in the process, formalizing into our model military notion of symmetry and asymmetry in warfare as a commutator, also known as a Lie bracket. In doing so, we have sought to shift the question from the prediction of outcomes of combat, upon which previous combat models such as the Lanchester-type equations have been typically constructed, towards determining the uncertainty outcomes, using a rigorous analytical basis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
243
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信