基于宽带-多模混合振动能量采集器的研究

IF 2.1 3区 工程技术 Q2 ENGINEERING, CIVIL
Bing Chen, Shi-Qi Li, Xiaolei Tang, Lijie Zhang
{"title":"基于宽带-多模混合振动能量采集器的研究","authors":"Bing Chen, Shi-Qi Li, Xiaolei Tang, Lijie Zhang","doi":"10.12989/SSS.2021.28.1.029","DOIUrl":null,"url":null,"abstract":"To improve the energy conversion efficiency and working frequency bandwidth of a single frequency piezoelectric vibration energy harvester, a new type of hybrid vibration energy harvester is developed which is combined with the mechanism of piezoelectric and electromagnetic energy conversion. The system comprises of a PZT cantilever beam, an elastic suspended magnetic mass, a magnet block attached to the end of the cantilever beam and a resonator. The addition of resonator can not only increase the mode, but also adjust the frequency of harvester flexibly. Nonlinear magnetic force of magnet block not only broadens the frequency band and improves the output performance of the system, but also changes the resonant frequency to make the harvester have better adjustable performance. On this basis, an improved electromechanical coupled analytical model of continuum is proposed which can be solved by the Runge-Kutta algorithm and the influence of different factors (the mass and spring stiffness of the resonator, as well as the electromechanical coupling coefficient, electromagnetic coupling coefficient, magnet mass and magnetic flux) on the output are analyzed. According to the prototype of the vibration energy harvester developed, an experimental system was built. The performance of the independent and hybrid energy harvesters is evaluated by experimental and analytical methods. The peak output voltage of the piezoelectric part was about 4 times that of the electromagnetic part. The peak output current of the electromagnetic part is about 30 times that of the piezoelectric part. The study results show that the proposed new hybrid vibration energy harvester can achieve a wider frequency range and multimodal vibration energy harvesting. In addition, the bandwidth and power of the harvester can be dynamically adjusted by changing the resonator or electromechanical coupling coefficient, and the bandwidth of the harvester can also be adjusted by changing the quality and characteristics of the magnet.","PeriodicalId":51155,"journal":{"name":"Smart Structures and Systems","volume":"28 1","pages":"29"},"PeriodicalIF":2.1000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A study of a new hybrid vibration energy harvester based on broadband-multimode\",\"authors\":\"Bing Chen, Shi-Qi Li, Xiaolei Tang, Lijie Zhang\",\"doi\":\"10.12989/SSS.2021.28.1.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the energy conversion efficiency and working frequency bandwidth of a single frequency piezoelectric vibration energy harvester, a new type of hybrid vibration energy harvester is developed which is combined with the mechanism of piezoelectric and electromagnetic energy conversion. The system comprises of a PZT cantilever beam, an elastic suspended magnetic mass, a magnet block attached to the end of the cantilever beam and a resonator. The addition of resonator can not only increase the mode, but also adjust the frequency of harvester flexibly. Nonlinear magnetic force of magnet block not only broadens the frequency band and improves the output performance of the system, but also changes the resonant frequency to make the harvester have better adjustable performance. On this basis, an improved electromechanical coupled analytical model of continuum is proposed which can be solved by the Runge-Kutta algorithm and the influence of different factors (the mass and spring stiffness of the resonator, as well as the electromechanical coupling coefficient, electromagnetic coupling coefficient, magnet mass and magnetic flux) on the output are analyzed. According to the prototype of the vibration energy harvester developed, an experimental system was built. The performance of the independent and hybrid energy harvesters is evaluated by experimental and analytical methods. The peak output voltage of the piezoelectric part was about 4 times that of the electromagnetic part. The peak output current of the electromagnetic part is about 30 times that of the piezoelectric part. The study results show that the proposed new hybrid vibration energy harvester can achieve a wider frequency range and multimodal vibration energy harvesting. In addition, the bandwidth and power of the harvester can be dynamically adjusted by changing the resonator or electromechanical coupling coefficient, and the bandwidth of the harvester can also be adjusted by changing the quality and characteristics of the magnet.\",\"PeriodicalId\":51155,\"journal\":{\"name\":\"Smart Structures and Systems\",\"volume\":\"28 1\",\"pages\":\"29\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Smart Structures and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.12989/SSS.2021.28.1.029\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Structures and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/SSS.2021.28.1.029","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 1

摘要

为了提高单频压电振动能量采集器的能量转换效率和工作频带,将压电和电磁能量转换机制相结合,开发了一种新型的混合式振动能量采集器。该系统包括PZT悬臂梁、弹性悬浮磁性体、连接到悬臂梁末端的磁体块和谐振器。谐振器的加入不仅可以增加谐振频率,而且可以灵活地调节采集器的频率。磁块的非线性磁力不仅拓宽了系统的频带,提高了系统的输出性能,而且改变了谐振频率,使采集器具有更好的可调性能。在此基础上,提出了一种改进的连续体机电耦合分析模型,该模型可以用龙格-库塔算法求解,并分析了不同因素(谐振器的质量和弹簧刚度,以及机电耦合系数、电磁耦合系数、磁体质量和磁通量)对输出的影响。根据研制的振动能量采集器样机,建立了实验系统。通过实验和分析方法对独立式和混合式能量采集器的性能进行了评估。压电部件的峰值输出电压是电磁部件的峰值电压的大约4倍。电磁部分的峰值输出电流大约是压电部分的30倍。研究结果表明,所提出的新型混合式振动能量采集器可以实现更宽的频率范围和多模态的振动能量采集。此外,采集器的带宽和功率可以通过改变谐振器或机电耦合系数来动态调整,采集器的宽度也可以通过改变磁体的质量和特性来调整。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A study of a new hybrid vibration energy harvester based on broadband-multimode
To improve the energy conversion efficiency and working frequency bandwidth of a single frequency piezoelectric vibration energy harvester, a new type of hybrid vibration energy harvester is developed which is combined with the mechanism of piezoelectric and electromagnetic energy conversion. The system comprises of a PZT cantilever beam, an elastic suspended magnetic mass, a magnet block attached to the end of the cantilever beam and a resonator. The addition of resonator can not only increase the mode, but also adjust the frequency of harvester flexibly. Nonlinear magnetic force of magnet block not only broadens the frequency band and improves the output performance of the system, but also changes the resonant frequency to make the harvester have better adjustable performance. On this basis, an improved electromechanical coupled analytical model of continuum is proposed which can be solved by the Runge-Kutta algorithm and the influence of different factors (the mass and spring stiffness of the resonator, as well as the electromechanical coupling coefficient, electromagnetic coupling coefficient, magnet mass and magnetic flux) on the output are analyzed. According to the prototype of the vibration energy harvester developed, an experimental system was built. The performance of the independent and hybrid energy harvesters is evaluated by experimental and analytical methods. The peak output voltage of the piezoelectric part was about 4 times that of the electromagnetic part. The peak output current of the electromagnetic part is about 30 times that of the piezoelectric part. The study results show that the proposed new hybrid vibration energy harvester can achieve a wider frequency range and multimodal vibration energy harvesting. In addition, the bandwidth and power of the harvester can be dynamically adjusted by changing the resonator or electromechanical coupling coefficient, and the bandwidth of the harvester can also be adjusted by changing the quality and characteristics of the magnet.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Smart Structures and Systems
Smart Structures and Systems 工程技术-工程:机械
CiteScore
6.50
自引率
8.60%
发文量
0
审稿时长
9 months
期刊介绍: An International Journal of Mechatronics, Sensors, Monitoring, Control, Diagnosis, and Management airns at providing a major publication channel for researchers in the general area of smart structures and systems. Typical subjects considered by the journal include: Sensors/Actuators(Materials/devices/ informatics/networking) Structural Health Monitoring and Control Diagnosis/Prognosis Life Cycle Engineering(planning/design/ maintenance/renewal) and related areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信