Daniel Wright, Sadegh Dalvandi, Mark Batty, Brijesh Dongol
{"title":"具有宽松依赖关系的C11程序的机械化操作推理","authors":"Daniel Wright, Sadegh Dalvandi, Mark Batty, Brijesh Dongol","doi":"10.1145/3580285","DOIUrl":null,"url":null,"abstract":"Verification techniques for C11 programs have advanced significantly in recent years with the development of operational semantics and associated logics for increasingly large fragments of C11. However, these semantics and logics have been developed in a restricted setting to avoid the thin-air-read problem. In this article, we propose an operational semantics that leverages an intra-thread partial order (called semantic dependencies) induced by a recently developed denotational event-structure-based semantics. We prove that our operational semantics is sound and complete with respect to the denotational semantics. We present an associated logic that generalises a recent Owicki–Gries framework for RC11 RAR (repaired C11) with relaxed and release-acquire accesses. We describe the mechanisation of the logic in the Isabelle/HOL theorem prover, which we use to prove correctness of a number of examples.","PeriodicalId":50432,"journal":{"name":"Formal Aspects of Computing","volume":"35 1","pages":"1 - 27"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanised Operational Reasoning for C11 Programs with Relaxed Dependencies\",\"authors\":\"Daniel Wright, Sadegh Dalvandi, Mark Batty, Brijesh Dongol\",\"doi\":\"10.1145/3580285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Verification techniques for C11 programs have advanced significantly in recent years with the development of operational semantics and associated logics for increasingly large fragments of C11. However, these semantics and logics have been developed in a restricted setting to avoid the thin-air-read problem. In this article, we propose an operational semantics that leverages an intra-thread partial order (called semantic dependencies) induced by a recently developed denotational event-structure-based semantics. We prove that our operational semantics is sound and complete with respect to the denotational semantics. We present an associated logic that generalises a recent Owicki–Gries framework for RC11 RAR (repaired C11) with relaxed and release-acquire accesses. We describe the mechanisation of the logic in the Isabelle/HOL theorem prover, which we use to prove correctness of a number of examples.\",\"PeriodicalId\":50432,\"journal\":{\"name\":\"Formal Aspects of Computing\",\"volume\":\"35 1\",\"pages\":\"1 - 27\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Formal Aspects of Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3580285\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formal Aspects of Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3580285","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Mechanised Operational Reasoning for C11 Programs with Relaxed Dependencies
Verification techniques for C11 programs have advanced significantly in recent years with the development of operational semantics and associated logics for increasingly large fragments of C11. However, these semantics and logics have been developed in a restricted setting to avoid the thin-air-read problem. In this article, we propose an operational semantics that leverages an intra-thread partial order (called semantic dependencies) induced by a recently developed denotational event-structure-based semantics. We prove that our operational semantics is sound and complete with respect to the denotational semantics. We present an associated logic that generalises a recent Owicki–Gries framework for RC11 RAR (repaired C11) with relaxed and release-acquire accesses. We describe the mechanisation of the logic in the Isabelle/HOL theorem prover, which we use to prove correctness of a number of examples.
期刊介绍:
This journal aims to publish contributions at the junction of theory and practice. The objective is to disseminate applicable research. Thus new theoretical contributions are welcome where they are motivated by potential application; applications of existing formalisms are of interest if they show something novel about the approach or application.
In particular, the scope of Formal Aspects of Computing includes:
well-founded notations for the description of systems;
verifiable design methods;
elucidation of fundamental computational concepts;
approaches to fault-tolerant design;
theorem-proving support;
state-exploration tools;
formal underpinning of widely used notations and methods;
formal approaches to requirements analysis.