{"title":"НЕРІВНОСТІ КОШІ-БУНЯКОВСЬКОГО І ГЕЛДЕРА ТА ЇХНЄ УЗАГАЛЬНЕННЯ","authors":"Юрій Бохонов, Тетяна Бохонова","doi":"10.31110/2413-1571-2023-038-2-002","DOIUrl":null,"url":null,"abstract":"Формулювання проблеми. Класичним нерівностям присвячена різноманітна математична література. Нерівності Коші-Буняковського та Гелдера лежать в основі геометрії унітарних та нормованих просторів. У статті розглянуто узагальнення цих конструкцій – полілінійні форми і нерівності для них. Зміст узагальнених нерівностей полягає в оцінці полілінійної форми від системи векторів через їхні норми. Сама форма за зовнішнім виглядом є узагальненням скалярного добутку від довільної кількості векторів. Суттєво, що доведення проводяться елементарними методами, без використання засобів математичного аналізу. Відомо, що нерівність Коші-Буняковського є частинним випадком нерівності Гелдера. В роботі показується, що навпаки, другу з цих нерівностей може бути виведено з першої. Застосування доведених нерівностей до конкретних векторів дає одержання відомих результатів, зокрема, нерівності для середніх степеневих і деяких інших, які авторам не зустрічались у математичній літературі. Нерівності можуть бути перенесені на вектори з нескінченновимірних просторів послідовностей. Їх можна застосовувати також для пошуку екстремуму деяких функцій і при підготовці до олімпіад.\nМатеріали і методи. Для доведення узагальненої нерівності Коші-Буняковського використано нерівність Коші для невід’ємних чисел, що є координатами векторів багатовимірного простору. При певному виборі таких векторів з цієї нерівності доводиться узагальнена нерівність Гелдера. Вибираючи вектори різноманітними способами, можна одержати різні змістовні нерівності.\nРезультати. Доведено узагальнені нерівності Коші-Буняковського, Гелдера, нерівність для середніх степеневих та деякі інші.\nВисновки. Застосування узагальнених нерівностей Коші-Буняковського і Гелдера до різних систем векторів з невід’ємними координатами дає нерівності – як вже відомі, так і нові і досить змістовні. Їхнє доведення зводиться лише до вибору потрібної системи векторів. На цьому шляху вдається легко доводити нерівності, які можна зустріти на математичних олімпіадах.","PeriodicalId":52608,"journal":{"name":"Fizikomatematichna osvita","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fizikomatematichna osvita","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31110/2413-1571-2023-038-2-002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
НЕРІВНОСТІ КОШІ-БУНЯКОВСЬКОГО І ГЕЛДЕРА ТА ЇХНЄ УЗАГАЛЬНЕННЯ
Формулювання проблеми. Класичним нерівностям присвячена різноманітна математична література. Нерівності Коші-Буняковського та Гелдера лежать в основі геометрії унітарних та нормованих просторів. У статті розглянуто узагальнення цих конструкцій – полілінійні форми і нерівності для них. Зміст узагальнених нерівностей полягає в оцінці полілінійної форми від системи векторів через їхні норми. Сама форма за зовнішнім виглядом є узагальненням скалярного добутку від довільної кількості векторів. Суттєво, що доведення проводяться елементарними методами, без використання засобів математичного аналізу. Відомо, що нерівність Коші-Буняковського є частинним випадком нерівності Гелдера. В роботі показується, що навпаки, другу з цих нерівностей може бути виведено з першої. Застосування доведених нерівностей до конкретних векторів дає одержання відомих результатів, зокрема, нерівності для середніх степеневих і деяких інших, які авторам не зустрічались у математичній літературі. Нерівності можуть бути перенесені на вектори з нескінченновимірних просторів послідовностей. Їх можна застосовувати також для пошуку екстремуму деяких функцій і при підготовці до олімпіад.
Матеріали і методи. Для доведення узагальненої нерівності Коші-Буняковського використано нерівність Коші для невід’ємних чисел, що є координатами векторів багатовимірного простору. При певному виборі таких векторів з цієї нерівності доводиться узагальнена нерівність Гелдера. Вибираючи вектори різноманітними способами, можна одержати різні змістовні нерівності.
Результати. Доведено узагальнені нерівності Коші-Буняковського, Гелдера, нерівність для середніх степеневих та деякі інші.
Висновки. Застосування узагальнених нерівностей Коші-Буняковського і Гелдера до різних систем векторів з невід’ємними координатами дає нерівності – як вже відомі, так і нові і досить змістовні. Їхнє доведення зводиться лише до вибору потрібної системи векторів. На цьому шляху вдається легко доводити нерівності, які можна зустріти на математичних олімпіадах.