{"title":"新冠肺炎疫情期间美国保持社交距离的动态模型","authors":"S. Chitanvis","doi":"10.1101/2020.05.18.20105411","DOIUrl":null,"url":null,"abstract":"Abstract Background Social distancing has led to a “flattening of the curve” in many states across the U.S. This is part of a novel, massive, global social experiment which has served to mitigate the COVID-19 pandemic in the absence of a vaccine or effective anti-viral drugs. Hence it is important to be able to forecast hospitalizations reasonably accurately. Methods We propose on phenomenological grounds a random walk/generalized diffusion equation which incorporates the effect of social distancing to describe the temporal evolution of the probability of having a given number of hospitalizations. The probability density function is log-normal in the number of hospitalizations, which is useful in describing pandemics where the number of hospitalizations is very high. Findings We used this insight and data to make forecasts for states using Monte Carlo methods. Back testing validates our approach, which yields good results about a week into the future. States are beginning to reopen at the time of submission of this paper and our forecasts indicate possible precursors of increased hospitalizations. However, the trends we forecast for hospitalizations as well as infections thus far show moderate growth. Additionally we studied the reproducibility Ro in New York (Italian strain) and California (Wuhan strain). We find that even if there is a difference in the transmission of the two strains, social distancing has been able to control the progression of COVID 19.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"8 1","pages":"141 - 149"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamical model for social distancing in the U.S. during the COVID-19 epidemic\",\"authors\":\"S. Chitanvis\",\"doi\":\"10.1101/2020.05.18.20105411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background Social distancing has led to a “flattening of the curve” in many states across the U.S. This is part of a novel, massive, global social experiment which has served to mitigate the COVID-19 pandemic in the absence of a vaccine or effective anti-viral drugs. Hence it is important to be able to forecast hospitalizations reasonably accurately. Methods We propose on phenomenological grounds a random walk/generalized diffusion equation which incorporates the effect of social distancing to describe the temporal evolution of the probability of having a given number of hospitalizations. The probability density function is log-normal in the number of hospitalizations, which is useful in describing pandemics where the number of hospitalizations is very high. Findings We used this insight and data to make forecasts for states using Monte Carlo methods. Back testing validates our approach, which yields good results about a week into the future. States are beginning to reopen at the time of submission of this paper and our forecasts indicate possible precursors of increased hospitalizations. However, the trends we forecast for hospitalizations as well as infections thus far show moderate growth. Additionally we studied the reproducibility Ro in New York (Italian strain) and California (Wuhan strain). We find that even if there is a difference in the transmission of the two strains, social distancing has been able to control the progression of COVID 19.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"8 1\",\"pages\":\"141 - 149\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2020.05.18.20105411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2020.05.18.20105411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
Dynamical model for social distancing in the U.S. during the COVID-19 epidemic
Abstract Background Social distancing has led to a “flattening of the curve” in many states across the U.S. This is part of a novel, massive, global social experiment which has served to mitigate the COVID-19 pandemic in the absence of a vaccine or effective anti-viral drugs. Hence it is important to be able to forecast hospitalizations reasonably accurately. Methods We propose on phenomenological grounds a random walk/generalized diffusion equation which incorporates the effect of social distancing to describe the temporal evolution of the probability of having a given number of hospitalizations. The probability density function is log-normal in the number of hospitalizations, which is useful in describing pandemics where the number of hospitalizations is very high. Findings We used this insight and data to make forecasts for states using Monte Carlo methods. Back testing validates our approach, which yields good results about a week into the future. States are beginning to reopen at the time of submission of this paper and our forecasts indicate possible precursors of increased hospitalizations. However, the trends we forecast for hospitalizations as well as infections thus far show moderate growth. Additionally we studied the reproducibility Ro in New York (Italian strain) and California (Wuhan strain). We find that even if there is a difference in the transmission of the two strains, social distancing has been able to control the progression of COVID 19.