结合交叉熵算法和∈约束方法进行多目标优化

Q3 Mathematics
Abdelmajid Ezzine, A. Alla, N. Raissi
{"title":"结合交叉熵算法和∈约束方法进行多目标优化","authors":"Abdelmajid Ezzine, A. Alla, N. Raissi","doi":"10.2478/mjpaa-2021-0019","DOIUrl":null,"url":null,"abstract":"Abstract This paper aims to propose a new hybrid approach for solving multiobjective optimization problems. This approach is based on a combination of global and local search procedures. The cross-entropy method is used as a stochastic model-based method to solve the multiobjective optimization problem and reach a first elite set of global solutions. In the local search step, an ∈-constraint method converts the multiobjective optimization problem to a series of parameterized single-objective optimization problems. Then, sequential quadratic programming (SQP) is used to solve the derived single-objective optimization problems allowing to reinforce and improve the global results. Numerical examples are used to demonstrate the efficiency and effectiveness of the proposed approach.","PeriodicalId":36270,"journal":{"name":"Moroccan Journal of Pure and Applied Analysis","volume":"7 1","pages":"299 - 311"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining the cross-entropy algorithm and ∈-constraint method for multiobjective optimization\",\"authors\":\"Abdelmajid Ezzine, A. Alla, N. Raissi\",\"doi\":\"10.2478/mjpaa-2021-0019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This paper aims to propose a new hybrid approach for solving multiobjective optimization problems. This approach is based on a combination of global and local search procedures. The cross-entropy method is used as a stochastic model-based method to solve the multiobjective optimization problem and reach a first elite set of global solutions. In the local search step, an ∈-constraint method converts the multiobjective optimization problem to a series of parameterized single-objective optimization problems. Then, sequential quadratic programming (SQP) is used to solve the derived single-objective optimization problems allowing to reinforce and improve the global results. Numerical examples are used to demonstrate the efficiency and effectiveness of the proposed approach.\",\"PeriodicalId\":36270,\"journal\":{\"name\":\"Moroccan Journal of Pure and Applied Analysis\",\"volume\":\"7 1\",\"pages\":\"299 - 311\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moroccan Journal of Pure and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/mjpaa-2021-0019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moroccan Journal of Pure and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/mjpaa-2021-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文旨在提出一种新的求解多目标优化问题的混合方法。这种方法是基于全局和局部搜索过程的结合。将交叉熵法作为一种基于随机模型的方法来求解多目标优化问题,并得到全局解的第一精英集。在局部搜索步骤中,∈约束方法将多目标优化问题转化为一系列参数化的单目标优化问题。然后,将序列二次规划(SQP)用于求解导出的单目标优化问题,从而加强和改进全局结果。数值算例验证了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining the cross-entropy algorithm and ∈-constraint method for multiobjective optimization
Abstract This paper aims to propose a new hybrid approach for solving multiobjective optimization problems. This approach is based on a combination of global and local search procedures. The cross-entropy method is used as a stochastic model-based method to solve the multiobjective optimization problem and reach a first elite set of global solutions. In the local search step, an ∈-constraint method converts the multiobjective optimization problem to a series of parameterized single-objective optimization problems. Then, sequential quadratic programming (SQP) is used to solve the derived single-objective optimization problems allowing to reinforce and improve the global results. Numerical examples are used to demonstrate the efficiency and effectiveness of the proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moroccan Journal of Pure and Applied Analysis
Moroccan Journal of Pure and Applied Analysis Mathematics-Numerical Analysis
CiteScore
1.60
自引率
0.00%
发文量
27
审稿时长
8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信