{"title":"miR-375通过靶向MAP3K1诱导家禽脂肪肝的形成和跨代遗传。","authors":"Heng-li Xie, Yonghong Zhang, Xiaoyang Tan, Yi Zheng, Hongyu Ni, Lijie Dong, Jinlei Zheng, Jinfu Diao, Yijing Yin, Jiabao Zhang, Xuefeng Sun, Yuwei Yang","doi":"10.1089/dna.2022.0078","DOIUrl":null,"url":null,"abstract":"The liver of poultry is the primary site of lipid synthesis. The excessive production of lipids accumulates in liver tissues causing lipid metabolism disorders, which result in fatty liver disease and have a transgenerational effect of acquired phenotypes. However, its specific mechanisms have not yet been fully understood. In this study, the differentially expressed miR-375 as well as its target gene MAP3K1 (mitogen-activated protein kinase kinase kinase 1) were screened out by interaction network analysis of microRNA sequencing results and transcriptome profiling in the fatty liver group of the F0-F3 generation (p < 0.05 or p < 0.01). Furthermore, the results showed that the number of lipid droplets and triglyceride content were significantly decreased after upregulation of miR-375 in primary hepatocyte culture in vitro (p < 0.05 or p < 0.01). The MAP3K1 knockdown group exhibited the opposite trends (p < 0.05 or p < 0.01). P53, Bcl-x, PMP22, and CDKN2C related to cell proliferation were significantly upregulated or downregulated after knocking down MAP3K1 (p < 0.05). This research uniquely revealed that silencing miR-375 inhibits lipid biosynthesis and promotes cell proliferation, which may be due to the partial regulation of the expression level of MAP3K1, thereby further participating in the transgenerational inheritance process of regulating liver lipid metabolism. These results reveal the pathogenesis of fatty liver in noncoding RNA and provide good candidate genes for breeding progress of disease resistance in chickens.","PeriodicalId":11248,"journal":{"name":"DNA and cell biology","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2022-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"miR-375 Induced the Formation and Transgenerational Inheritance of Fatty Liver in Poultry by Targeting MAP3K1.\",\"authors\":\"Heng-li Xie, Yonghong Zhang, Xiaoyang Tan, Yi Zheng, Hongyu Ni, Lijie Dong, Jinlei Zheng, Jinfu Diao, Yijing Yin, Jiabao Zhang, Xuefeng Sun, Yuwei Yang\",\"doi\":\"10.1089/dna.2022.0078\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The liver of poultry is the primary site of lipid synthesis. The excessive production of lipids accumulates in liver tissues causing lipid metabolism disorders, which result in fatty liver disease and have a transgenerational effect of acquired phenotypes. However, its specific mechanisms have not yet been fully understood. In this study, the differentially expressed miR-375 as well as its target gene MAP3K1 (mitogen-activated protein kinase kinase kinase 1) were screened out by interaction network analysis of microRNA sequencing results and transcriptome profiling in the fatty liver group of the F0-F3 generation (p < 0.05 or p < 0.01). Furthermore, the results showed that the number of lipid droplets and triglyceride content were significantly decreased after upregulation of miR-375 in primary hepatocyte culture in vitro (p < 0.05 or p < 0.01). The MAP3K1 knockdown group exhibited the opposite trends (p < 0.05 or p < 0.01). P53, Bcl-x, PMP22, and CDKN2C related to cell proliferation were significantly upregulated or downregulated after knocking down MAP3K1 (p < 0.05). This research uniquely revealed that silencing miR-375 inhibits lipid biosynthesis and promotes cell proliferation, which may be due to the partial regulation of the expression level of MAP3K1, thereby further participating in the transgenerational inheritance process of regulating liver lipid metabolism. These results reveal the pathogenesis of fatty liver in noncoding RNA and provide good candidate genes for breeding progress of disease resistance in chickens.\",\"PeriodicalId\":11248,\"journal\":{\"name\":\"DNA and cell biology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA and cell biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1089/dna.2022.0078\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA and cell biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1089/dna.2022.0078","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
miR-375 Induced the Formation and Transgenerational Inheritance of Fatty Liver in Poultry by Targeting MAP3K1.
The liver of poultry is the primary site of lipid synthesis. The excessive production of lipids accumulates in liver tissues causing lipid metabolism disorders, which result in fatty liver disease and have a transgenerational effect of acquired phenotypes. However, its specific mechanisms have not yet been fully understood. In this study, the differentially expressed miR-375 as well as its target gene MAP3K1 (mitogen-activated protein kinase kinase kinase 1) were screened out by interaction network analysis of microRNA sequencing results and transcriptome profiling in the fatty liver group of the F0-F3 generation (p < 0.05 or p < 0.01). Furthermore, the results showed that the number of lipid droplets and triglyceride content were significantly decreased after upregulation of miR-375 in primary hepatocyte culture in vitro (p < 0.05 or p < 0.01). The MAP3K1 knockdown group exhibited the opposite trends (p < 0.05 or p < 0.01). P53, Bcl-x, PMP22, and CDKN2C related to cell proliferation were significantly upregulated or downregulated after knocking down MAP3K1 (p < 0.05). This research uniquely revealed that silencing miR-375 inhibits lipid biosynthesis and promotes cell proliferation, which may be due to the partial regulation of the expression level of MAP3K1, thereby further participating in the transgenerational inheritance process of regulating liver lipid metabolism. These results reveal the pathogenesis of fatty liver in noncoding RNA and provide good candidate genes for breeding progress of disease resistance in chickens.
期刊介绍:
DNA and Cell Biology delivers authoritative, peer-reviewed research on all aspects of molecular and cellular biology, with a unique focus on combining mechanistic and clinical studies to drive the field forward.
DNA and Cell Biology coverage includes:
Gene Structure, Function, and Regulation
Gene regulation
Molecular mechanisms of cell activation
Mechanisms of transcriptional, translational, or epigenetic control of gene expression
Molecular Medicine
Molecular pathogenesis
Genetic approaches to cancer and autoimmune diseases
Translational studies in cell and molecular biology
Cellular Organelles
Autophagy
Apoptosis
P bodies
Peroxisosomes
Protein Biosynthesis and Degradation
Regulation of protein synthesis
Post-translational modifications
Control of degradation
Cell-Autonomous Inflammation and Host Cell Response to Infection
Responses to cytokines and other physiological mediators
Evasive pathways of pathogens.