S. Kawsar, M. Ouassaf, Samir CHTITA, Aishi Barua Jui, S. Belaidi
{"title":"酰基取代生物活性半乳糖苷酯抗菌药物的PASS预测、分子对接及药动学研究","authors":"S. Kawsar, M. Ouassaf, Samir CHTITA, Aishi Barua Jui, S. Belaidi","doi":"10.20450/mjcce.2022.2403","DOIUrl":null,"url":null,"abstract":"Currently, methyl-β-D-galactopyranoside (MDG) esters have become a focus of attention due to their promising biological and pharmacokinetic properties and could be a good choice in unraveling the global issue of pathogenic multidrug resistance. Structural modification of MDG can improve its mode of biological activity. In line with these efforts, a series of previously synthesized MDG esters were designed and evaluated by Prediction of Activity Spectra for Substances (PASS), molecular docking simulation, and pharmacokinetic depiction. Encouraging PASS activity was observed for several aliphatic and aromatic MDG esters, and antibacterial efficacy was more promising than other features. In support, molecular docking studies were performed against the macrolide phosphotransferase enzyme MPH to identify a potential allosteric binding site for these esters. Molecular docking indicated that the shape of the MDG esters and their ability to form multiple electrostatic and hydrogen bonds with the active site corresponds to the binding modes of other minor-groove binders. Pharmacokinetic predictions were also performed to evaluate the absorption, metabolism, and toxic properties of MDG esters. These findings demonstrate that MDG esters are promising for use as biocompatible antibacterial agents in the future.","PeriodicalId":18088,"journal":{"name":"Macedonian Journal of Chemistry and Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2022-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PASS prediction, molecular docking and pharmacokinetic studies of acyl substituted bioactive galactopyranoside esters as antibacterial agents\",\"authors\":\"S. Kawsar, M. Ouassaf, Samir CHTITA, Aishi Barua Jui, S. Belaidi\",\"doi\":\"10.20450/mjcce.2022.2403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Currently, methyl-β-D-galactopyranoside (MDG) esters have become a focus of attention due to their promising biological and pharmacokinetic properties and could be a good choice in unraveling the global issue of pathogenic multidrug resistance. Structural modification of MDG can improve its mode of biological activity. In line with these efforts, a series of previously synthesized MDG esters were designed and evaluated by Prediction of Activity Spectra for Substances (PASS), molecular docking simulation, and pharmacokinetic depiction. Encouraging PASS activity was observed for several aliphatic and aromatic MDG esters, and antibacterial efficacy was more promising than other features. In support, molecular docking studies were performed against the macrolide phosphotransferase enzyme MPH to identify a potential allosteric binding site for these esters. Molecular docking indicated that the shape of the MDG esters and their ability to form multiple electrostatic and hydrogen bonds with the active site corresponds to the binding modes of other minor-groove binders. Pharmacokinetic predictions were also performed to evaluate the absorption, metabolism, and toxic properties of MDG esters. These findings demonstrate that MDG esters are promising for use as biocompatible antibacterial agents in the future.\",\"PeriodicalId\":18088,\"journal\":{\"name\":\"Macedonian Journal of Chemistry and Chemical Engineering\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macedonian Journal of Chemistry and Chemical Engineering\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.20450/mjcce.2022.2403\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macedonian Journal of Chemistry and Chemical Engineering","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.20450/mjcce.2022.2403","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
PASS prediction, molecular docking and pharmacokinetic studies of acyl substituted bioactive galactopyranoside esters as antibacterial agents
Currently, methyl-β-D-galactopyranoside (MDG) esters have become a focus of attention due to their promising biological and pharmacokinetic properties and could be a good choice in unraveling the global issue of pathogenic multidrug resistance. Structural modification of MDG can improve its mode of biological activity. In line with these efforts, a series of previously synthesized MDG esters were designed and evaluated by Prediction of Activity Spectra for Substances (PASS), molecular docking simulation, and pharmacokinetic depiction. Encouraging PASS activity was observed for several aliphatic and aromatic MDG esters, and antibacterial efficacy was more promising than other features. In support, molecular docking studies were performed against the macrolide phosphotransferase enzyme MPH to identify a potential allosteric binding site for these esters. Molecular docking indicated that the shape of the MDG esters and their ability to form multiple electrostatic and hydrogen bonds with the active site corresponds to the binding modes of other minor-groove binders. Pharmacokinetic predictions were also performed to evaluate the absorption, metabolism, and toxic properties of MDG esters. These findings demonstrate that MDG esters are promising for use as biocompatible antibacterial agents in the future.
期刊介绍:
Macedonian Journal of Chemistry and Chemical Engineering (Maced. J. Chem. Chem. Eng.) is an official publication of the Society of Chemists and Technologists of Macedonia. It is a not-for-profit open acess journal published twice a year. The journal publishes original scientific papers, short communications, reviews and educational papers from all fields of chemistry, chemical engineering, food technology, biotechnology and material sciences, metallurgy and related fields. The papers published in the Journal are summarized in Chemical Abstracts.