全非线性Peskin问题的临界局部适定性

IF 3.1 1区 数学 Q1 MATHEMATICS
Stephen Cameron, Robert M. Strain
{"title":"全非线性Peskin问题的临界局部适定性","authors":"Stephen Cameron,&nbsp;Robert M. Strain","doi":"10.1002/cpa.22139","DOIUrl":null,"url":null,"abstract":"<p>We study the problem where a one-dimensional elastic string is immersed in a two-dimensional steady Stokes fluid. This is known as the Stokes immersed boundary problem and also as the Peskin problem. We consider the case with equal viscosities and with a fully non-linear tension law; this model has been called the fully nonlinear Peskin problem. In this case we prove local in time wellposedness for arbitrary initial data in the scaling critical Besov space <math>\n <semantics>\n <mrow>\n <msubsup>\n <mover>\n <mi>B</mi>\n <mo>̇</mo>\n </mover>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mn>3</mn>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>T</mi>\n <mo>;</mo>\n <msup>\n <mi>R</mi>\n <mn>2</mn>\n </msup>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$\\dot{B}^{3/2}_{2,1}(\\mathbb {T}; \\mathbb {R}^2)$</annotation>\n </semantics></math>. We additionally prove the optimal higher order smoothing effects for the solution. To prove this result we derive a new formulation of the boundary integral equation that describes the parametrization of the string, and we crucially utilize a new cancelation structure.</p>","PeriodicalId":10601,"journal":{"name":"Communications on Pure and Applied Mathematics","volume":"77 2","pages":"901-989"},"PeriodicalIF":3.1000,"publicationDate":"2023-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Critical local well-posedness for the fully nonlinear Peskin problem\",\"authors\":\"Stephen Cameron,&nbsp;Robert M. Strain\",\"doi\":\"10.1002/cpa.22139\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the problem where a one-dimensional elastic string is immersed in a two-dimensional steady Stokes fluid. This is known as the Stokes immersed boundary problem and also as the Peskin problem. We consider the case with equal viscosities and with a fully non-linear tension law; this model has been called the fully nonlinear Peskin problem. In this case we prove local in time wellposedness for arbitrary initial data in the scaling critical Besov space <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mover>\\n <mi>B</mi>\\n <mo>̇</mo>\\n </mover>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mn>3</mn>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>T</mi>\\n <mo>;</mo>\\n <msup>\\n <mi>R</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$\\\\dot{B}^{3/2}_{2,1}(\\\\mathbb {T}; \\\\mathbb {R}^2)$</annotation>\\n </semantics></math>. We additionally prove the optimal higher order smoothing effects for the solution. To prove this result we derive a new formulation of the boundary integral equation that describes the parametrization of the string, and we crucially utilize a new cancelation structure.</p>\",\"PeriodicalId\":10601,\"journal\":{\"name\":\"Communications on Pure and Applied Mathematics\",\"volume\":\"77 2\",\"pages\":\"901-989\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2023-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications on Pure and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22139\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications on Pure and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpa.22139","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

研究了一维弹性弦浸入二维稳态斯托克斯流体中的问题。这被称为Stokes浸入边界问题,也被称为Peskin问题。我们考虑具有等粘度和完全非线性张力定律的情况;这个模型被称为全非线性佩斯金问题。在这种情况下,我们证明了任意初始数据在尺度临界Besov空间中的局部时间适定性。此外,我们还证明了解的最优高阶平滑效果。为了证明这一结果,我们导出了描述弦参数化的边界积分方程的新公式,并且我们关键地利用了一个新的抵消结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Critical local well-posedness for the fully nonlinear Peskin problem

We study the problem where a one-dimensional elastic string is immersed in a two-dimensional steady Stokes fluid. This is known as the Stokes immersed boundary problem and also as the Peskin problem. We consider the case with equal viscosities and with a fully non-linear tension law; this model has been called the fully nonlinear Peskin problem. In this case we prove local in time wellposedness for arbitrary initial data in the scaling critical Besov space B ̇ 2 , 1 3 / 2 ( T ; R 2 ) $\dot{B}^{3/2}_{2,1}(\mathbb {T}; \mathbb {R}^2)$ . We additionally prove the optimal higher order smoothing effects for the solution. To prove this result we derive a new formulation of the boundary integral equation that describes the parametrization of the string, and we crucially utilize a new cancelation structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.70
自引率
3.30%
发文量
59
审稿时长
>12 weeks
期刊介绍: Communications on Pure and Applied Mathematics (ISSN 0010-3640) is published monthly, one volume per year, by John Wiley & Sons, Inc. © 2019. The journal primarily publishes papers originating at or solicited by the Courant Institute of Mathematical Sciences. It features recent developments in applied mathematics, mathematical physics, and mathematical analysis. The topics include partial differential equations, computer science, and applied mathematics. CPAM is devoted to mathematical contributions to the sciences; both theoretical and applied papers, of original or expository type, are included.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信