图的双信号数

Q3 Mathematics
X. Lenin Xaviour, S. Ancy Mary
{"title":"图的双信号数","authors":"X. Lenin Xaviour, S. Ancy Mary","doi":"10.15826/umj.2022.1.007","DOIUrl":null,"url":null,"abstract":"A set \\(S\\) of vertices in a connected graph \\(G=(V,E)\\) is called a signal set if every vertex not in \\(S\\) lies on a signal path between two vertices from \\(S\\). A set \\(S\\) is called a double signal set of \\(G\\) if \\(S\\) if for each pair of vertices \\(x,y \\in G\\) there exist \\(u,v \\in S\\) such that \\(x,y \\in L[u,v]\\). The double signal number \\(\\mathrm{dsn}\\,(G)\\) of \\(G\\) is the minimum cardinality of a double signal set. Any double signal set of cardinality \\(\\mathrm{dsn}\\,(G)\\) is called \\(\\mathrm{dsn}\\)-set of \\(G\\). In this paper we introduce and initiate some properties on double signal number of a graph. We have also given relation between geodetic number, signal number and double signal number for some classes of graphs.","PeriodicalId":36805,"journal":{"name":"Ural Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON DOUBLE SIGNAL NUMBER OF A GRAPH\",\"authors\":\"X. Lenin Xaviour, S. Ancy Mary\",\"doi\":\"10.15826/umj.2022.1.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A set \\\\(S\\\\) of vertices in a connected graph \\\\(G=(V,E)\\\\) is called a signal set if every vertex not in \\\\(S\\\\) lies on a signal path between two vertices from \\\\(S\\\\). A set \\\\(S\\\\) is called a double signal set of \\\\(G\\\\) if \\\\(S\\\\) if for each pair of vertices \\\\(x,y \\\\in G\\\\) there exist \\\\(u,v \\\\in S\\\\) such that \\\\(x,y \\\\in L[u,v]\\\\). The double signal number \\\\(\\\\mathrm{dsn}\\\\,(G)\\\\) of \\\\(G\\\\) is the minimum cardinality of a double signal set. Any double signal set of cardinality \\\\(\\\\mathrm{dsn}\\\\,(G)\\\\) is called \\\\(\\\\mathrm{dsn}\\\\)-set of \\\\(G\\\\). In this paper we introduce and initiate some properties on double signal number of a graph. We have also given relation between geodetic number, signal number and double signal number for some classes of graphs.\",\"PeriodicalId\":36805,\"journal\":{\"name\":\"Ural Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ural Mathematical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15826/umj.2022.1.007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ural Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15826/umj.2022.1.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

如果不在\(S\)中的每个顶点都位于来自\(S\)的两个顶点之间的信号路径上,则连通图\(G=(V,E)\)中的顶点集合\(S\)称为信号集。集合\(S\)被称为双信号集\(G\),如果\(S\)如果对于每一对顶点\(x,y \in G\)存在\(u,v \in S\),使得\(x,y \in L[u,v]\)。\(G\)的双信号数\(\mathrm{dsn}\,(G)\)是双信号集的最小基数。基数为\(\mathrm{dsn}\,(G)\)的任何双信号集称为\(\mathrm{dsn}\) - \(G\)集。本文引入并初始化了图的双信号数的一些性质。给出了几类图的测地数、信号数和双信号数之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ON DOUBLE SIGNAL NUMBER OF A GRAPH
A set \(S\) of vertices in a connected graph \(G=(V,E)\) is called a signal set if every vertex not in \(S\) lies on a signal path between two vertices from \(S\). A set \(S\) is called a double signal set of \(G\) if \(S\) if for each pair of vertices \(x,y \in G\) there exist \(u,v \in S\) such that \(x,y \in L[u,v]\). The double signal number \(\mathrm{dsn}\,(G)\) of \(G\) is the minimum cardinality of a double signal set. Any double signal set of cardinality \(\mathrm{dsn}\,(G)\) is called \(\mathrm{dsn}\)-set of \(G\). In this paper we introduce and initiate some properties on double signal number of a graph. We have also given relation between geodetic number, signal number and double signal number for some classes of graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ural Mathematical Journal
Ural Mathematical Journal Mathematics-Mathematics (all)
CiteScore
1.30
自引率
0.00%
发文量
12
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信