一个集合到二维欧几里德空间的映射的不变量

IF 0.7 Q2 MATHEMATICS
D. Khadjiev, Gayrat Beshimov, İdris Ören
{"title":"一个集合到二维欧几里德空间的映射的不变量","authors":"D. Khadjiev, Gayrat Beshimov, İdris Ören","doi":"10.31801/cfsuasmas.1003511","DOIUrl":null,"url":null,"abstract":"Let $E_{2}$ be the $2$-dimensional Euclidean space and $T$ be a set such that it has at least two elements. A mapping $\\alpha : T\\rightarrow E_{2}$ will be called a $T$-figure in $E_{2}$. Let $O(2, R)$ be the group of all orthogonal transformations of $E_{2}$. Put $SO(2, R)=\\left\\{ g\\in O(2, R)|detg=1\\right\\}$, $MO(2, R)=\\left\\{F:E_{2}\\rightarrow E_{2}\\mid Fx=gx+b, g\\in O(2,R), b\\in E_{2}\\right\\}$, \n$MSO(2, R)= \\left\\{F\\in MO(2, R)|detg=1\\right\\}$. \nThe present paper is devoted to solutions of problems of $G$-equivalence of $T$-figures in $E_{2}$ for groups $G=O(2, R), SO(2, R)$, $MO(2, R)$, $MSO(2, R)$. Complete systems of $G$-invariants of $T$-figures in $E_{2}$ for these groups are obtained. Complete systems of relations between elements of the obtained complete systems of $G$-invariants are given for these groups.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariants of a mapping of a set to the two-dimensional Euclidean space\",\"authors\":\"D. Khadjiev, Gayrat Beshimov, İdris Ören\",\"doi\":\"10.31801/cfsuasmas.1003511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $E_{2}$ be the $2$-dimensional Euclidean space and $T$ be a set such that it has at least two elements. A mapping $\\\\alpha : T\\\\rightarrow E_{2}$ will be called a $T$-figure in $E_{2}$. Let $O(2, R)$ be the group of all orthogonal transformations of $E_{2}$. Put $SO(2, R)=\\\\left\\\\{ g\\\\in O(2, R)|detg=1\\\\right\\\\}$, $MO(2, R)=\\\\left\\\\{F:E_{2}\\\\rightarrow E_{2}\\\\mid Fx=gx+b, g\\\\in O(2,R), b\\\\in E_{2}\\\\right\\\\}$, \\n$MSO(2, R)= \\\\left\\\\{F\\\\in MO(2, R)|detg=1\\\\right\\\\}$. \\nThe present paper is devoted to solutions of problems of $G$-equivalence of $T$-figures in $E_{2}$ for groups $G=O(2, R), SO(2, R)$, $MO(2, R)$, $MSO(2, R)$. Complete systems of $G$-invariants of $T$-figures in $E_{2}$ for these groups are obtained. Complete systems of relations between elements of the obtained complete systems of $G$-invariants are given for these groups.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1003511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1003511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设$E_{2}$是$2$维欧几里得空间,$T$是一个集,使得它至少有两个元素。映射$\alpha:T\rightarrowE_{2}$将在$E_{2}$中被称为$T$图形。设$O(2,R)$是$E_{2}$的所有正交变换的群。将$SO(2,R)=\left\{g\放入O(2、R)| detg=1\right\}$,$MO(2,R)=\lft\{F:E_{2}\rightarrow E_{2}\ mid Fx=gx+b,g\放入O(2、R),b\放入E_{。本文研究了群$G=O(2,R),SO(2,R)$,$MO(2,R$,$MSO(2、R)$的$E_{2}$中$T$-图的$G$-等价性问题的解。对于这些群,得到了$E_{2}$中$T$-图的$G$-不变量的完备系统。对于这些群,给出了所得到的$G$-不变量的完备系统的元素之间的关系的完备系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariants of a mapping of a set to the two-dimensional Euclidean space
Let $E_{2}$ be the $2$-dimensional Euclidean space and $T$ be a set such that it has at least two elements. A mapping $\alpha : T\rightarrow E_{2}$ will be called a $T$-figure in $E_{2}$. Let $O(2, R)$ be the group of all orthogonal transformations of $E_{2}$. Put $SO(2, R)=\left\{ g\in O(2, R)|detg=1\right\}$, $MO(2, R)=\left\{F:E_{2}\rightarrow E_{2}\mid Fx=gx+b, g\in O(2,R), b\in E_{2}\right\}$, $MSO(2, R)= \left\{F\in MO(2, R)|detg=1\right\}$. The present paper is devoted to solutions of problems of $G$-equivalence of $T$-figures in $E_{2}$ for groups $G=O(2, R), SO(2, R)$, $MO(2, R)$, $MSO(2, R)$. Complete systems of $G$-invariants of $T$-figures in $E_{2}$ for these groups are obtained. Complete systems of relations between elements of the obtained complete systems of $G$-invariants are given for these groups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信