复值BV函数代数的射影自由与稳定秩

Pub Date : 2022-10-19 DOI:10.4153/S000843952300005X
A. Brudnyi
{"title":"复值BV函数代数的射影自由与稳定秩","authors":"A. Brudnyi","doi":"10.4153/S000843952300005X","DOIUrl":null,"url":null,"abstract":"Abstract The paper investigates the algebraic properties of weakly inverse-closed complex Banach function algebras generated by functions of bounded variation on a finite interval. It is proved that such algebras have Bass stable rank 1 and are projective-free if they do not contain nontrivial idempotents. These properties are derived from a new result on the vanishing of the second Čech cohomology group of the polynomially convex hull of a continuum of a finite linear measure described by the classical H. Alexander theorem.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Projective freeness and stable rank of algebras of complex-valued BV functions\",\"authors\":\"A. Brudnyi\",\"doi\":\"10.4153/S000843952300005X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The paper investigates the algebraic properties of weakly inverse-closed complex Banach function algebras generated by functions of bounded variation on a finite interval. It is proved that such algebras have Bass stable rank 1 and are projective-free if they do not contain nontrivial idempotents. These properties are derived from a new result on the vanishing of the second Čech cohomology group of the polynomially convex hull of a continuum of a finite linear measure described by the classical H. Alexander theorem.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4153/S000843952300005X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4153/S000843952300005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

研究了有限区间上有界变分函数生成的弱逆闭复Banach函数代数的代数性质。证明了不包含非平凡幂等的代数具有巴斯稳定秩1,且是无投影代数。这些性质是由经典H. Alexander定理所描述的有限线性测度连续统的多项式凸壳的第二个Čech上同调群的消失的一个新结果导出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Projective freeness and stable rank of algebras of complex-valued BV functions
Abstract The paper investigates the algebraic properties of weakly inverse-closed complex Banach function algebras generated by functions of bounded variation on a finite interval. It is proved that such algebras have Bass stable rank 1 and are projective-free if they do not contain nontrivial idempotents. These properties are derived from a new result on the vanishing of the second Čech cohomology group of the polynomially convex hull of a continuum of a finite linear measure described by the classical H. Alexander theorem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信