有限环空间的同伦

IF 0.5 4区 数学
Fernando Sancho de Salas
{"title":"有限环空间的同伦","authors":"Fernando Sancho de Salas","doi":"10.1007/s40062-017-0190-2","DOIUrl":null,"url":null,"abstract":"<p>A finite ringed space is a ringed space whose underlying topological space is finite. The category of finite ringed spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a finite ringed space. We study the homotopy of finite ringed spaces, extending Stong’s homotopy classification of finite topological spaces to finite ringed spaces. We also prove that the category of quasi-coherent modules on a finite ringed space is a homotopy invariant.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"13 3","pages":"481 - 501"},"PeriodicalIF":0.5000,"publicationDate":"2017-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-017-0190-2","citationCount":"1","resultStr":"{\"title\":\"Homotopy of finite ringed spaces\",\"authors\":\"Fernando Sancho de Salas\",\"doi\":\"10.1007/s40062-017-0190-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A finite ringed space is a ringed space whose underlying topological space is finite. The category of finite ringed spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a finite ringed space. We study the homotopy of finite ringed spaces, extending Stong’s homotopy classification of finite topological spaces to finite ringed spaces. We also prove that the category of quasi-coherent modules on a finite ringed space is a homotopy invariant.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"13 3\",\"pages\":\"481 - 501\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-017-0190-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-017-0190-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-017-0190-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有限环空间是其底层拓扑空间是有限的环空间。有限环空间的范畴完全包含有限拓扑空间的范畴和仿射格式的范畴。任何环空间,赋以有限开覆盖,产生有限环空间。研究了有限环空间的同伦,将有限拓扑空间的strong同伦分类推广到有限环空间。证明了有限环空间上拟相干模的范畴是同伦不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homotopy of finite ringed spaces

A finite ringed space is a ringed space whose underlying topological space is finite. The category of finite ringed spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a finite ringed space. We study the homotopy of finite ringed spaces, extending Stong’s homotopy classification of finite topological spaces to finite ringed spaces. We also prove that the category of quasi-coherent modules on a finite ringed space is a homotopy invariant.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信