{"title":"有限环空间的同伦","authors":"Fernando Sancho de Salas","doi":"10.1007/s40062-017-0190-2","DOIUrl":null,"url":null,"abstract":"<p>A finite ringed space is a ringed space whose underlying topological space is finite. The category of finite ringed spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a finite ringed space. We study the homotopy of finite ringed spaces, extending Stong’s homotopy classification of finite topological spaces to finite ringed spaces. We also prove that the category of quasi-coherent modules on a finite ringed space is a homotopy invariant.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"13 3","pages":"481 - 501"},"PeriodicalIF":0.5000,"publicationDate":"2017-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-017-0190-2","citationCount":"1","resultStr":"{\"title\":\"Homotopy of finite ringed spaces\",\"authors\":\"Fernando Sancho de Salas\",\"doi\":\"10.1007/s40062-017-0190-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A finite ringed space is a ringed space whose underlying topological space is finite. The category of finite ringed spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a finite ringed space. We study the homotopy of finite ringed spaces, extending Stong’s homotopy classification of finite topological spaces to finite ringed spaces. We also prove that the category of quasi-coherent modules on a finite ringed space is a homotopy invariant.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"13 3\",\"pages\":\"481 - 501\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2017-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-017-0190-2\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-017-0190-2\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-017-0190-2","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A finite ringed space is a ringed space whose underlying topological space is finite. The category of finite ringed spaces contains, fully faithfully, the category of finite topological spaces and the category of affine schemes. Any ringed space, endowed with a finite open covering, produces a finite ringed space. We study the homotopy of finite ringed spaces, extending Stong’s homotopy classification of finite topological spaces to finite ringed spaces. We also prove that the category of quasi-coherent modules on a finite ringed space is a homotopy invariant.
期刊介绍:
Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences.
Journal of Homotopy and Related Structures is intended to publish papers on
Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.