{"title":"具有最优稳定性的临界聚焦非线性波动方程的II型爆破解ℝ³⁺cco","authors":"Stefano Burzio, J. Krieger","doi":"10.1090/memo/1369","DOIUrl":null,"url":null,"abstract":"<p>We show that the finite time type II blow up solutions for the energy critical nonlinear wave equation <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"white medium square u equals minus u Superscript 5\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>◻</mml:mo>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mn>5</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Box u = -u^5</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 3 plus 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>3</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{3+1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> constructed in Krieger, Schlag, and Tartaru (“Slow blow-up solutions for the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1 Baseline left-parenthesis double-struck upper R cubed right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^1(\\mathbb {R}^3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> critical focusing semilinear wave equation”, 2009) and Krieger and Schlag (“Full range of blow up exponents for the quintic wave equation in three dimensions”, 2014) are stable along a co-dimension one Lipschitz manifold of data perturbations in a suitable topology, provided the scaling parameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda left-parenthesis t right-parenthesis equals t Superscript negative 1 minus nu\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mi>t</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda (t) = t^{-1-\\nu }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is sufficiently close to the self-similar rate, i. e., <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\nu >0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is sufficiently small. This result is qualitatively optimal in light of the result of Krieger, Nakamishi, and Schlag (“Center-stable manifold of the ground state in the energy space for the critical wave equation”, 2015). The paper builds on the analysis of Krieger and Wong (“On type I blow-up formation for the critical NLW”, 2014).</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2017-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Type II Blow Up Solutions with Optimal Stability Properties for the Critical Focussing Nonlinear Wave Equation on ℝ³⁺¹\",\"authors\":\"Stefano Burzio, J. Krieger\",\"doi\":\"10.1090/memo/1369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the finite time type II blow up solutions for the energy critical nonlinear wave equation <disp-formula content-type=\\\"math/mathml\\\">\\n\\\\[\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"white medium square u equals minus u Superscript 5\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>◻</mml:mo>\\n </mml:mrow>\\n <mml:mi>u</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:msup>\\n <mml:mi>u</mml:mi>\\n <mml:mn>5</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Box u = -u^5</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n\\\\]\\n</disp-formula> on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript 3 plus 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>3</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^{3+1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> constructed in Krieger, Schlag, and Tartaru (“Slow blow-up solutions for the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 1 Baseline left-parenthesis double-struck upper R cubed right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^1(\\\\mathbb {R}^3)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> critical focusing semilinear wave equation”, 2009) and Krieger and Schlag (“Full range of blow up exponents for the quintic wave equation in three dimensions”, 2014) are stable along a co-dimension one Lipschitz manifold of data perturbations in a suitable topology, provided the scaling parameter <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda left-parenthesis t right-parenthesis equals t Superscript negative 1 minus nu\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:msup>\\n <mml:mi>t</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda (t) = t^{-1-\\\\nu }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is sufficiently close to the self-similar rate, i. e., <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu >0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is sufficiently small. This result is qualitatively optimal in light of the result of Krieger, Nakamishi, and Schlag (“Center-stable manifold of the ground state in the energy space for the critical wave equation”, 2015). The paper builds on the analysis of Krieger and Wong (“On type I blow-up formation for the critical NLW”, 2014).</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2017-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1369\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1369","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Type II Blow Up Solutions with Optimal Stability Properties for the Critical Focussing Nonlinear Wave Equation on ℝ³⁺¹
We show that the finite time type II blow up solutions for the energy critical nonlinear wave equation
\[
◻u=−u5\Box u = -u^5
\]
on R3+1\mathbb {R}^{3+1} constructed in Krieger, Schlag, and Tartaru (“Slow blow-up solutions for the H1(R3)H^1(\mathbb {R}^3) critical focusing semilinear wave equation”, 2009) and Krieger and Schlag (“Full range of blow up exponents for the quintic wave equation in three dimensions”, 2014) are stable along a co-dimension one Lipschitz manifold of data perturbations in a suitable topology, provided the scaling parameter λ(t)=t−1−ν\lambda (t) = t^{-1-\nu } is sufficiently close to the self-similar rate, i. e., ν>0\nu >0 is sufficiently small. This result is qualitatively optimal in light of the result of Krieger, Nakamishi, and Schlag (“Center-stable manifold of the ground state in the energy space for the critical wave equation”, 2015). The paper builds on the analysis of Krieger and Wong (“On type I blow-up formation for the critical NLW”, 2014).
期刊介绍:
Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.