具有最优稳定性的临界聚焦非线性波动方程的II型爆破解ℝ³⁺cco

IF 2 4区 数学 Q1 MATHEMATICS
Stefano Burzio, J. Krieger
{"title":"具有最优稳定性的临界聚焦非线性波动方程的II型爆破解ℝ³⁺cco","authors":"Stefano Burzio, J. Krieger","doi":"10.1090/memo/1369","DOIUrl":null,"url":null,"abstract":"<p>We show that the finite time type II blow up solutions for the energy critical nonlinear wave equation <disp-formula content-type=\"math/mathml\">\n\\[\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"white medium square u equals minus u Superscript 5\">\n <mml:semantics>\n <mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>◻</mml:mo>\n </mml:mrow>\n <mml:mi>u</mml:mi>\n <mml:mo>=</mml:mo>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:msup>\n <mml:mi>u</mml:mi>\n <mml:mn>5</mml:mn>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\Box u = -u^5</mml:annotation>\n </mml:semantics>\n</mml:math>\n\\]\n</disp-formula> on <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper R Superscript 3 plus 1\">\n <mml:semantics>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mn>3</mml:mn>\n <mml:mo>+</mml:mo>\n <mml:mn>1</mml:mn>\n </mml:mrow>\n </mml:msup>\n <mml:annotation encoding=\"application/x-tex\">\\mathbb {R}^{3+1}</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> constructed in Krieger, Schlag, and Tartaru (“Slow blow-up solutions for the <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper H Superscript 1 Baseline left-parenthesis double-struck upper R cubed right-parenthesis\">\n <mml:semantics>\n <mml:mrow>\n <mml:msup>\n <mml:mi>H</mml:mi>\n <mml:mn>1</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:msup>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mi mathvariant=\"double-struck\">R</mml:mi>\n </mml:mrow>\n <mml:mn>3</mml:mn>\n </mml:msup>\n <mml:mo stretchy=\"false\">)</mml:mo>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">H^1(\\mathbb {R}^3)</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> critical focusing semilinear wave equation”, 2009) and Krieger and Schlag (“Full range of blow up exponents for the quintic wave equation in three dimensions”, 2014) are stable along a co-dimension one Lipschitz manifold of data perturbations in a suitable topology, provided the scaling parameter <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"lamda left-parenthesis t right-parenthesis equals t Superscript negative 1 minus nu\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>λ<!-- λ --></mml:mi>\n <mml:mo stretchy=\"false\">(</mml:mo>\n <mml:mi>t</mml:mi>\n <mml:mo stretchy=\"false\">)</mml:mo>\n <mml:mo>=</mml:mo>\n <mml:msup>\n <mml:mi>t</mml:mi>\n <mml:mrow class=\"MJX-TeXAtom-ORD\">\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mn>1</mml:mn>\n <mml:mo>−<!-- − --></mml:mo>\n <mml:mi>ν<!-- ν --></mml:mi>\n </mml:mrow>\n </mml:msup>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\lambda (t) = t^{-1-\\nu }</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is sufficiently close to the self-similar rate, i. e., <inline-formula content-type=\"math/mathml\">\n<mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"nu greater-than 0\">\n <mml:semantics>\n <mml:mrow>\n <mml:mi>ν<!-- ν --></mml:mi>\n <mml:mo>></mml:mo>\n <mml:mn>0</mml:mn>\n </mml:mrow>\n <mml:annotation encoding=\"application/x-tex\">\\nu >0</mml:annotation>\n </mml:semantics>\n</mml:math>\n</inline-formula> is sufficiently small. This result is qualitatively optimal in light of the result of Krieger, Nakamishi, and Schlag (“Center-stable manifold of the ground state in the energy space for the critical wave equation”, 2015). The paper builds on the analysis of Krieger and Wong (“On type I blow-up formation for the critical NLW”, 2014).</p>","PeriodicalId":49828,"journal":{"name":"Memoirs of the American Mathematical Society","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2017-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Type II Blow Up Solutions with Optimal Stability Properties for the Critical Focussing Nonlinear Wave Equation on ℝ³⁺¹\",\"authors\":\"Stefano Burzio, J. Krieger\",\"doi\":\"10.1090/memo/1369\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show that the finite time type II blow up solutions for the energy critical nonlinear wave equation <disp-formula content-type=\\\"math/mathml\\\">\\n\\\\[\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"white medium square u equals minus u Superscript 5\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>◻</mml:mo>\\n </mml:mrow>\\n <mml:mi>u</mml:mi>\\n <mml:mo>=</mml:mo>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:msup>\\n <mml:mi>u</mml:mi>\\n <mml:mn>5</mml:mn>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\Box u = -u^5</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n\\\\]\\n</disp-formula> on <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"double-struck upper R Superscript 3 plus 1\\\">\\n <mml:semantics>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mn>3</mml:mn>\\n <mml:mo>+</mml:mo>\\n <mml:mn>1</mml:mn>\\n </mml:mrow>\\n </mml:msup>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\mathbb {R}^{3+1}</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> constructed in Krieger, Schlag, and Tartaru (“Slow blow-up solutions for the <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"upper H Superscript 1 Baseline left-parenthesis double-struck upper R cubed right-parenthesis\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:msup>\\n <mml:mi>H</mml:mi>\\n <mml:mn>1</mml:mn>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:msup>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mi mathvariant=\\\"double-struck\\\">R</mml:mi>\\n </mml:mrow>\\n <mml:mn>3</mml:mn>\\n </mml:msup>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">H^1(\\\\mathbb {R}^3)</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> critical focusing semilinear wave equation”, 2009) and Krieger and Schlag (“Full range of blow up exponents for the quintic wave equation in three dimensions”, 2014) are stable along a co-dimension one Lipschitz manifold of data perturbations in a suitable topology, provided the scaling parameter <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"lamda left-parenthesis t right-parenthesis equals t Superscript negative 1 minus nu\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>λ<!-- λ --></mml:mi>\\n <mml:mo stretchy=\\\"false\\\">(</mml:mo>\\n <mml:mi>t</mml:mi>\\n <mml:mo stretchy=\\\"false\\\">)</mml:mo>\\n <mml:mo>=</mml:mo>\\n <mml:msup>\\n <mml:mi>t</mml:mi>\\n <mml:mrow class=\\\"MJX-TeXAtom-ORD\\\">\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mn>1</mml:mn>\\n <mml:mo>−<!-- − --></mml:mo>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n </mml:mrow>\\n </mml:msup>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\lambda (t) = t^{-1-\\\\nu }</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is sufficiently close to the self-similar rate, i. e., <inline-formula content-type=\\\"math/mathml\\\">\\n<mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" alttext=\\\"nu greater-than 0\\\">\\n <mml:semantics>\\n <mml:mrow>\\n <mml:mi>ν<!-- ν --></mml:mi>\\n <mml:mo>></mml:mo>\\n <mml:mn>0</mml:mn>\\n </mml:mrow>\\n <mml:annotation encoding=\\\"application/x-tex\\\">\\\\nu >0</mml:annotation>\\n </mml:semantics>\\n</mml:math>\\n</inline-formula> is sufficiently small. This result is qualitatively optimal in light of the result of Krieger, Nakamishi, and Schlag (“Center-stable manifold of the ground state in the energy space for the critical wave equation”, 2015). The paper builds on the analysis of Krieger and Wong (“On type I blow-up formation for the critical NLW”, 2014).</p>\",\"PeriodicalId\":49828,\"journal\":{\"name\":\"Memoirs of the American Mathematical Society\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2017-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Memoirs of the American Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1090/memo/1369\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Memoirs of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/memo/1369","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 7

摘要

我们证明了能量临界非线性波动方程的有限时间II型爆破解◻ 在Krieger,Schlag,和Tartaru(“H1(R3)H^1(\mathbb{R}^3)临界聚焦半线性波动方程的慢爆破解”,2009)以及Krieger和Schlag(“三维五次波动方程的全范围爆破指数”,2014)在合适的拓扑中沿着数据扰动的同维Lipschitz流形是稳定的,假设标度参数λ(t)=t−1−Γ\lambda(t)=t^{-1-\nu}足够接近自相似率,即Γ>0\nu>0足够小。根据Krieger、Nakamishi和Schlag的结果(“临界波动方程能量空间中基态的中心稳定流形”,2015),该结果在质量上是最优的。本文建立在Krieger和Wong的分析基础上(“关于临界NLW的I型爆破形成”,2014)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Type II Blow Up Solutions with Optimal Stability Properties for the Critical Focussing Nonlinear Wave Equation on ℝ³⁺¹

We show that the finite time type II blow up solutions for the energy critical nonlinear wave equation \[ u = u 5 \Box u = -u^5 \] on R 3 + 1 \mathbb {R}^{3+1} constructed in Krieger, Schlag, and Tartaru (“Slow blow-up solutions for the H 1 ( R 3 ) H^1(\mathbb {R}^3) critical focusing semilinear wave equation”, 2009) and Krieger and Schlag (“Full range of blow up exponents for the quintic wave equation in three dimensions”, 2014) are stable along a co-dimension one Lipschitz manifold of data perturbations in a suitable topology, provided the scaling parameter λ ( t ) = t 1 ν \lambda (t) = t^{-1-\nu } is sufficiently close to the self-similar rate, i. e., ν > 0 \nu >0 is sufficiently small. This result is qualitatively optimal in light of the result of Krieger, Nakamishi, and Schlag (“Center-stable manifold of the ground state in the energy space for the critical wave equation”, 2015). The paper builds on the analysis of Krieger and Wong (“On type I blow-up formation for the critical NLW”, 2014).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
5.30%
发文量
39
审稿时长
>12 weeks
期刊介绍: Memoirs of the American Mathematical Society is devoted to the publication of research in all areas of pure and applied mathematics. The Memoirs is designed particularly to publish long papers or groups of cognate papers in book form, and is under the supervision of the Editorial Committee of the AMS journal Transactions of the AMS. To be accepted by the editorial board, manuscripts must be correct, new, and significant. Further, they must be well written and of interest to a substantial number of mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信