{"title":"北格陵兰下寒武纪有机壁微体化石:多样性的重新评估","authors":"Elise Wallet, Ben J. Slater, S. Willman","doi":"10.1080/01916122.2023.2251044","DOIUrl":null,"url":null,"abstract":"Abstract The early Cambrian Buen Formation (North Greenland) hosts an exceptionally rich fossil biota that has contributed significantly to our knowledge of early metazoans, yet the fossil remains of primary producers from this deposit have received less attention. Here we examine the palynological component of the Buen Formation, with a focus on acritarchs and filamentous microfossils. Our analysis revealed the presence of 49 form taxa, 15 of which are described for the first time in the Buen Formation. These include large elements of presumably benthic origin, together with cyst-like acritarchs. Comasphaeridium longispinosum Vidal 1993 is renamed Comasphaeridium? brillesensis nom. nov., and Comasphaeridium densispinosum Vidal 1993 is reassigned to a new genus, Pearisphaeridium, becoming Pearisphaeridium densispinosum comb. nov. The diagnoses of Pearisphaeridium densispinosum (Vidal 1993) comb. nov. and Skiagia pura Moczydłowska 1988 are emended. Further, careful analysis of disparity in the recovered assemblage has revealed the presence of numerous transitional morphologies among the recorded acritarch form taxa. Though some of these transitional forms likely represent biologically meaningful entities (e.g. life cycle stages, ecophenotypes), others appear to have been artificially generated by taphonomic processes. Accounting for taphonomic factors and other sources of morphological variation has curtailed diversity down to 30 acritarch morphotypes, ten of which represent distinct abundance peaks broadly corresponding to acritarch genera. This analysis illustrates how population-based studies of early Cambrian acritarchs can help to discern the different factors that impinge on acritarch morphology, detect instances of taxonomic inflation, and refine our measures of diversity at the base of early Palaeozoic food webs.","PeriodicalId":54644,"journal":{"name":"Palynology","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Organic-walled microfossils from the lower Cambrian of North Greenland: a reappraisal of diversity\",\"authors\":\"Elise Wallet, Ben J. Slater, S. Willman\",\"doi\":\"10.1080/01916122.2023.2251044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The early Cambrian Buen Formation (North Greenland) hosts an exceptionally rich fossil biota that has contributed significantly to our knowledge of early metazoans, yet the fossil remains of primary producers from this deposit have received less attention. Here we examine the palynological component of the Buen Formation, with a focus on acritarchs and filamentous microfossils. Our analysis revealed the presence of 49 form taxa, 15 of which are described for the first time in the Buen Formation. These include large elements of presumably benthic origin, together with cyst-like acritarchs. Comasphaeridium longispinosum Vidal 1993 is renamed Comasphaeridium? brillesensis nom. nov., and Comasphaeridium densispinosum Vidal 1993 is reassigned to a new genus, Pearisphaeridium, becoming Pearisphaeridium densispinosum comb. nov. The diagnoses of Pearisphaeridium densispinosum (Vidal 1993) comb. nov. and Skiagia pura Moczydłowska 1988 are emended. Further, careful analysis of disparity in the recovered assemblage has revealed the presence of numerous transitional morphologies among the recorded acritarch form taxa. Though some of these transitional forms likely represent biologically meaningful entities (e.g. life cycle stages, ecophenotypes), others appear to have been artificially generated by taphonomic processes. Accounting for taphonomic factors and other sources of morphological variation has curtailed diversity down to 30 acritarch morphotypes, ten of which represent distinct abundance peaks broadly corresponding to acritarch genera. This analysis illustrates how population-based studies of early Cambrian acritarchs can help to discern the different factors that impinge on acritarch morphology, detect instances of taxonomic inflation, and refine our measures of diversity at the base of early Palaeozoic food webs.\",\"PeriodicalId\":54644,\"journal\":{\"name\":\"Palynology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Palynology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/01916122.2023.2251044\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PALEONTOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Palynology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01916122.2023.2251044","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PALEONTOLOGY","Score":null,"Total":0}
Organic-walled microfossils from the lower Cambrian of North Greenland: a reappraisal of diversity
Abstract The early Cambrian Buen Formation (North Greenland) hosts an exceptionally rich fossil biota that has contributed significantly to our knowledge of early metazoans, yet the fossil remains of primary producers from this deposit have received less attention. Here we examine the palynological component of the Buen Formation, with a focus on acritarchs and filamentous microfossils. Our analysis revealed the presence of 49 form taxa, 15 of which are described for the first time in the Buen Formation. These include large elements of presumably benthic origin, together with cyst-like acritarchs. Comasphaeridium longispinosum Vidal 1993 is renamed Comasphaeridium? brillesensis nom. nov., and Comasphaeridium densispinosum Vidal 1993 is reassigned to a new genus, Pearisphaeridium, becoming Pearisphaeridium densispinosum comb. nov. The diagnoses of Pearisphaeridium densispinosum (Vidal 1993) comb. nov. and Skiagia pura Moczydłowska 1988 are emended. Further, careful analysis of disparity in the recovered assemblage has revealed the presence of numerous transitional morphologies among the recorded acritarch form taxa. Though some of these transitional forms likely represent biologically meaningful entities (e.g. life cycle stages, ecophenotypes), others appear to have been artificially generated by taphonomic processes. Accounting for taphonomic factors and other sources of morphological variation has curtailed diversity down to 30 acritarch morphotypes, ten of which represent distinct abundance peaks broadly corresponding to acritarch genera. This analysis illustrates how population-based studies of early Cambrian acritarchs can help to discern the different factors that impinge on acritarch morphology, detect instances of taxonomic inflation, and refine our measures of diversity at the base of early Palaeozoic food webs.
期刊介绍:
Palynology is an international journal, and covers all aspects of the science. We accept papers on both pre-Quaternary and Quaternary palynology and palaeobotany. Contributions on novel uses of palynology, review articles, book reviews, taxonomic studies and papers on methodology are all actively encouraged.