碳纳米管在ZnO纳米颗粒表面缺陷钝化和紫外发射增强中的作用

IF 3.1 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
K. Nagpal, L. Rapenne, D. Wragg, E. Rauwel, P. Rauwel
{"title":"碳纳米管在ZnO纳米颗粒表面缺陷钝化和紫外发射增强中的作用","authors":"K. Nagpal, L. Rapenne, D. Wragg, E. Rauwel, P. Rauwel","doi":"10.1177/18479804221079419","DOIUrl":null,"url":null,"abstract":"We report on the controlled enhancement of the UV emission from ZnO nanoparticles synthesized via hydrothermal sol-gel routes. Various characterization techniques were used in this study to determine the crystal structure, defect formation, morphology and size of the ZnO nanoparticles. Firstly, the crystallinity of the ZnO nanoparticles was assessed by X-ray diffraction. The role of the precursor quantities on their morphology and bandgap states was investigated via transmission electron microscopy and photoluminescence spectroscopy, respectively. Subsequently, the impurity content and related bonds were evaluated by Fourier-transform infrared spectroscopy. In this work, the ZnO nanoparticles manifest a sharp UV emission along with a subdued green emission in the visible region. Conjoining ZnO with carbon nanotubes (CNT) suppressed the visible emission, as well as blueshifted and intensified the UV emission by ∼5-fold. These results suggest that CNT are effective in passivating the surface states of ZnO nanoparticles.","PeriodicalId":19018,"journal":{"name":"Nanomaterials and Nanotechnology","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"The role of CNT in surface defect passivation and UV emission intensification of ZnO nanoparticles\",\"authors\":\"K. Nagpal, L. Rapenne, D. Wragg, E. Rauwel, P. Rauwel\",\"doi\":\"10.1177/18479804221079419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the controlled enhancement of the UV emission from ZnO nanoparticles synthesized via hydrothermal sol-gel routes. Various characterization techniques were used in this study to determine the crystal structure, defect formation, morphology and size of the ZnO nanoparticles. Firstly, the crystallinity of the ZnO nanoparticles was assessed by X-ray diffraction. The role of the precursor quantities on their morphology and bandgap states was investigated via transmission electron microscopy and photoluminescence spectroscopy, respectively. Subsequently, the impurity content and related bonds were evaluated by Fourier-transform infrared spectroscopy. In this work, the ZnO nanoparticles manifest a sharp UV emission along with a subdued green emission in the visible region. Conjoining ZnO with carbon nanotubes (CNT) suppressed the visible emission, as well as blueshifted and intensified the UV emission by ∼5-fold. These results suggest that CNT are effective in passivating the surface states of ZnO nanoparticles.\",\"PeriodicalId\":19018,\"journal\":{\"name\":\"Nanomaterials and Nanotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanomaterials and Nanotechnology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/18479804221079419\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials and Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/18479804221079419","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

摘要

我们报道了通过水热溶胶-凝胶途径合成的ZnO纳米颗粒的紫外发射的可控增强。在本研究中使用了各种表征技术来确定ZnO纳米颗粒的晶体结构、缺陷形成、形貌和尺寸。首先,通过x射线衍射对ZnO纳米粒子的结晶度进行了表征。通过透射电子显微镜和光致发光光谱分别研究了前驱体量对其形貌和带隙状态的影响。随后,用傅里叶变换红外光谱对杂质含量和相关键进行了表征。在这项工作中,ZnO纳米颗粒在可见光区域表现出明显的紫外发射和柔和的绿色发射。ZnO与碳纳米管(CNT)的结合抑制了可见光发射,并使紫外发射蓝移和增强了约5倍。这些结果表明碳纳米管可以有效地钝化ZnO纳米颗粒的表面状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The role of CNT in surface defect passivation and UV emission intensification of ZnO nanoparticles
We report on the controlled enhancement of the UV emission from ZnO nanoparticles synthesized via hydrothermal sol-gel routes. Various characterization techniques were used in this study to determine the crystal structure, defect formation, morphology and size of the ZnO nanoparticles. Firstly, the crystallinity of the ZnO nanoparticles was assessed by X-ray diffraction. The role of the precursor quantities on their morphology and bandgap states was investigated via transmission electron microscopy and photoluminescence spectroscopy, respectively. Subsequently, the impurity content and related bonds were evaluated by Fourier-transform infrared spectroscopy. In this work, the ZnO nanoparticles manifest a sharp UV emission along with a subdued green emission in the visible region. Conjoining ZnO with carbon nanotubes (CNT) suppressed the visible emission, as well as blueshifted and intensified the UV emission by ∼5-fold. These results suggest that CNT are effective in passivating the surface states of ZnO nanoparticles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanomaterials and Nanotechnology
Nanomaterials and Nanotechnology NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
7.20
自引率
21.60%
发文量
13
审稿时长
15 weeks
期刊介绍: Nanomaterials and Nanotechnology is a JCR ranked, peer-reviewed open access journal addressed to a cross-disciplinary readership including scientists, researchers and professionals in both academia and industry with an interest in nanoscience and nanotechnology. The scope comprises (but is not limited to) the fundamental aspects and applications of nanoscience and nanotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信