不可约量子旗流形上相对线模的双模连接

IF 0.9 3区 物理与天体物理 Q2 MATHEMATICS
A. Carotenuto, R. O. Buachalla
{"title":"不可约量子旗流形上相对线模的双模连接","authors":"A. Carotenuto, R. O. Buachalla","doi":"10.3842/SIGMA.2022.070","DOIUrl":null,"url":null,"abstract":"It was recently shown (by the second author and D\\'{i}az Garc\\'{i}a, Krutov, Somberg, and Strung) that every relative line module over an irreducible quantum flag manifold $\\mathcal{O}_q(G/L_S)$ admits a unique $\\mathcal{O}_q(G)$-covariant connection with respect to the Heckenberger-Kolb differential calculus $\\Omega^1_q(G/L_S)$. In this paper we show that these connections are bimodule connections with an invertible associated bimodule map. This is proved by applying general results of Beggs and Majid, on principal connections for quantum principal bundles, to the quantum principal bundle presentation of the Heckenberger-Kolb calculi recently constructed by the authors and D\\'{i}az Garc\\'{i}a. Explicit presentations of the associated bimodule maps are given first in terms of generalised quantum determinants, then in terms of the FRT presentation of the algebra $\\mathcal{O}_q(G)$, and finally in terms of Takeuchi's categorical equivalence for relative Hopf modules.","PeriodicalId":49453,"journal":{"name":"Symmetry Integrability and Geometry-Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bimodule Connections for Relative Line Modules over the Irreducible Quantum Flag Manifolds\",\"authors\":\"A. Carotenuto, R. O. Buachalla\",\"doi\":\"10.3842/SIGMA.2022.070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"It was recently shown (by the second author and D\\\\'{i}az Garc\\\\'{i}a, Krutov, Somberg, and Strung) that every relative line module over an irreducible quantum flag manifold $\\\\mathcal{O}_q(G/L_S)$ admits a unique $\\\\mathcal{O}_q(G)$-covariant connection with respect to the Heckenberger-Kolb differential calculus $\\\\Omega^1_q(G/L_S)$. In this paper we show that these connections are bimodule connections with an invertible associated bimodule map. This is proved by applying general results of Beggs and Majid, on principal connections for quantum principal bundles, to the quantum principal bundle presentation of the Heckenberger-Kolb calculi recently constructed by the authors and D\\\\'{i}az Garc\\\\'{i}a. Explicit presentations of the associated bimodule maps are given first in terms of generalised quantum determinants, then in terms of the FRT presentation of the algebra $\\\\mathcal{O}_q(G)$, and finally in terms of Takeuchi's categorical equivalence for relative Hopf modules.\",\"PeriodicalId\":49453,\"journal\":{\"name\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-02-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symmetry Integrability and Geometry-Methods and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.3842/SIGMA.2022.070\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symmetry Integrability and Geometry-Methods and Applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3842/SIGMA.2022.070","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

最近(由第二作者和D\ \ {i}az Garc\ \ {i}a, Krutov, Somberg, and string)证明了不可约量子标志流形$\mathcal{O}_q(G/L_S)$上的每个相对线模对于Heckenberger-Kolb微分$\Omega^1_q(G/L_S)$具有唯一的$\mathcal{O}_q(G)$-协变连接。在本文中,我们证明了这些连接是具有可逆关联双模映射的双模连接。将Beggs和Majid关于量子主束的主连接的一般结果应用于作者和D\ \ i}az Garc\ \ i}a最近构造的Heckenberger-Kolb演算的量子主束表示,证明了这一点。首先用广义量子行列式给出相关双模映射的显式表示,然后用代数$\mathcal{O}_q(G)$的FRT表示,最后用相对Hopf模的Takeuchi的范畴等价给出相关双模映射的显式表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bimodule Connections for Relative Line Modules over the Irreducible Quantum Flag Manifolds
It was recently shown (by the second author and D\'{i}az Garc\'{i}a, Krutov, Somberg, and Strung) that every relative line module over an irreducible quantum flag manifold $\mathcal{O}_q(G/L_S)$ admits a unique $\mathcal{O}_q(G)$-covariant connection with respect to the Heckenberger-Kolb differential calculus $\Omega^1_q(G/L_S)$. In this paper we show that these connections are bimodule connections with an invertible associated bimodule map. This is proved by applying general results of Beggs and Majid, on principal connections for quantum principal bundles, to the quantum principal bundle presentation of the Heckenberger-Kolb calculi recently constructed by the authors and D\'{i}az Garc\'{i}a. Explicit presentations of the associated bimodule maps are given first in terms of generalised quantum determinants, then in terms of the FRT presentation of the algebra $\mathcal{O}_q(G)$, and finally in terms of Takeuchi's categorical equivalence for relative Hopf modules.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
87
审稿时长
4-8 weeks
期刊介绍: Scope Geometrical methods in mathematical physics Lie theory and differential equations Classical and quantum integrable systems Algebraic methods in dynamical systems and chaos Exactly and quasi-exactly solvable models Lie groups and algebras, representation theory Orthogonal polynomials and special functions Integrable probability and stochastic processes Quantum algebras, quantum groups and their representations Symplectic, Poisson and noncommutative geometry Algebraic geometry and its applications Quantum field theories and string/gauge theories Statistical physics and condensed matter physics Quantum gravity and cosmology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信