I. Sedov, V. Arutyunov, M. Tsvetkov, D. Podlesniy, M. Salganskaya, A. Zaichenko, Y. Tsvetkova, A. V. Nikitin, A. Ozerskii, I. G. Fokin, E. Salgansky
{"title":"煤层气直接部分氧化和合成气制甲醇的可能性评价","authors":"I. Sedov, V. Arutyunov, M. Tsvetkov, D. Podlesniy, M. Salganskaya, A. Zaichenko, Y. Tsvetkova, A. V. Nikitin, A. Ozerskii, I. G. Fokin, E. Salgansky","doi":"10.18321/ectj1328","DOIUrl":null,"url":null,"abstract":"The possibility of using coalbed methane to produce methanol is assessed. Methanol can be obtained from methane both by direct partial oxidation and from synthesis gas formed through the oxidative conversion of methane. Thermodynamic analysis of coalbed methane conversion was carried out to determine the conditions for obtaining synthesis gas with the ratio [H2]/[CO] = 2, which is optimal for methanol production. The system consisting of methane, nitrogen, and oxygen, with different contents of oxygen and water vapor, was considered. The fuel-air equivalence ratio varied in the range from 2 to 4. The optimal conditions for obtaining synthesis gas for the production of methanol is the use of a mixture with an equivalence ratio of at least 4. It has also been shown that the addition of water vapor leads to an increase in the [H2]/[CO] ratio. Direct gas-phase oxidation of methane to methanol opens up the possibility of complex use of coal mining waste, including not only coalbed methane but also a large amount of coal waste accumulated during coal mining and beneficiation.","PeriodicalId":11795,"journal":{"name":"Eurasian Chemico-Technological Journal","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Evaluation of the Possibility to Use Coalbed Methane to Produce Methanol Both by Direct Partial Oxidation and From Synthesis Gas\",\"authors\":\"I. Sedov, V. Arutyunov, M. Tsvetkov, D. Podlesniy, M. Salganskaya, A. Zaichenko, Y. Tsvetkova, A. V. Nikitin, A. Ozerskii, I. G. Fokin, E. Salgansky\",\"doi\":\"10.18321/ectj1328\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The possibility of using coalbed methane to produce methanol is assessed. Methanol can be obtained from methane both by direct partial oxidation and from synthesis gas formed through the oxidative conversion of methane. Thermodynamic analysis of coalbed methane conversion was carried out to determine the conditions for obtaining synthesis gas with the ratio [H2]/[CO] = 2, which is optimal for methanol production. The system consisting of methane, nitrogen, and oxygen, with different contents of oxygen and water vapor, was considered. The fuel-air equivalence ratio varied in the range from 2 to 4. The optimal conditions for obtaining synthesis gas for the production of methanol is the use of a mixture with an equivalence ratio of at least 4. It has also been shown that the addition of water vapor leads to an increase in the [H2]/[CO] ratio. Direct gas-phase oxidation of methane to methanol opens up the possibility of complex use of coal mining waste, including not only coalbed methane but also a large amount of coal waste accumulated during coal mining and beneficiation.\",\"PeriodicalId\":11795,\"journal\":{\"name\":\"Eurasian Chemico-Technological Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasian Chemico-Technological Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18321/ectj1328\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasian Chemico-Technological Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18321/ectj1328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Evaluation of the Possibility to Use Coalbed Methane to Produce Methanol Both by Direct Partial Oxidation and From Synthesis Gas
The possibility of using coalbed methane to produce methanol is assessed. Methanol can be obtained from methane both by direct partial oxidation and from synthesis gas formed through the oxidative conversion of methane. Thermodynamic analysis of coalbed methane conversion was carried out to determine the conditions for obtaining synthesis gas with the ratio [H2]/[CO] = 2, which is optimal for methanol production. The system consisting of methane, nitrogen, and oxygen, with different contents of oxygen and water vapor, was considered. The fuel-air equivalence ratio varied in the range from 2 to 4. The optimal conditions for obtaining synthesis gas for the production of methanol is the use of a mixture with an equivalence ratio of at least 4. It has also been shown that the addition of water vapor leads to an increase in the [H2]/[CO] ratio. Direct gas-phase oxidation of methane to methanol opens up the possibility of complex use of coal mining waste, including not only coalbed methane but also a large amount of coal waste accumulated during coal mining and beneficiation.
期刊介绍:
The journal is designed for publication of experimental and theoretical investigation results in the field of chemistry and chemical technology. Among priority fields that emphasized by chemical science are as follows: advanced materials and chemical technologies, current issues of organic synthesis and chemistry of natural compounds, physical chemistry, chemical physics, electro-photo-radiative-plasma chemistry, colloids, nanotechnologies, catalysis and surface-active materials, polymers, biochemistry.