分类度和可树度

IF 0.9 1区 数学 Q1 LOGIC
Barbara F. Csima, D. Rossegger
{"title":"分类度和可树度","authors":"Barbara F. Csima, D. Rossegger","doi":"10.1142/s0219061324500028","DOIUrl":null,"url":null,"abstract":"We give a characterization of the strong degrees of categoricity of computable structures greater or equal to $\\mathbf 0''$. They are precisely the \\emph{treeable} degrees -- the least degrees of paths through computable trees -- that compute $\\mathbf 0''$. As a corollary, we obtain several new examples of degrees of categoricity. Among them we show that every degree $\\mathbf d$ with $\\mathbf 0^{(\\alpha)}\\leq \\mathbf d\\leq \\mathbf 0^{(\\alpha+1)}$ for $\\alpha$ a computable ordinal greater than $2$ is the strong degree of categoricity of a rigid structure. Using quite different techniques we show that every degree $\\mathbf d$ with $\\mathbf 0'\\leq \\mathbf d\\leq \\mathbf 0''$ is the strong degree of categoricity of a structure. Together with the above example this answers a question of Csima and Ng. To complete the picture we show that there is a degree $\\mathbf d$ with $\\mathbf 0'<\\mathbf d<\\mathbf 0''$ that is not the degree of categoricity of a rigid structure.","PeriodicalId":50144,"journal":{"name":"Journal of Mathematical Logic","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degrees of categoricity and treeable degrees\",\"authors\":\"Barbara F. Csima, D. Rossegger\",\"doi\":\"10.1142/s0219061324500028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a characterization of the strong degrees of categoricity of computable structures greater or equal to $\\\\mathbf 0''$. They are precisely the \\\\emph{treeable} degrees -- the least degrees of paths through computable trees -- that compute $\\\\mathbf 0''$. As a corollary, we obtain several new examples of degrees of categoricity. Among them we show that every degree $\\\\mathbf d$ with $\\\\mathbf 0^{(\\\\alpha)}\\\\leq \\\\mathbf d\\\\leq \\\\mathbf 0^{(\\\\alpha+1)}$ for $\\\\alpha$ a computable ordinal greater than $2$ is the strong degree of categoricity of a rigid structure. Using quite different techniques we show that every degree $\\\\mathbf d$ with $\\\\mathbf 0'\\\\leq \\\\mathbf d\\\\leq \\\\mathbf 0''$ is the strong degree of categoricity of a structure. Together with the above example this answers a question of Csima and Ng. To complete the picture we show that there is a degree $\\\\mathbf d$ with $\\\\mathbf 0'<\\\\mathbf d<\\\\mathbf 0''$ that is not the degree of categoricity of a rigid structure.\",\"PeriodicalId\":50144,\"journal\":{\"name\":\"Journal of Mathematical Logic\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2022-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219061324500028\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219061324500028","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们给出了大于或等于$\mathbf 0''$的可计算结构的强可分类度的特征。它们正是计算$\mathbf 0''$的\emph{treeable}度——通过可计算树的路径的最小度。作为推论,我们得到了几个新的分类度的例子。其中,我们证明了对于$\alpha$大于$2$的可计算序数,$\mathbf d$与$\mathbf 0^{(\alpha)}\leq\mathbfd\leq\athbf 0^}(\aalpha+1)}$的每一次度都是刚性结构的强可分类度。使用完全不同的技术,我们证明了$\mathbf d$与$\mathbf 0'\leq\mathbfd\leq\mathbf0''$的每个度都是结构的强可分类度。结合上面的例子,这回答了Csima和Ng的一个问题。为了完成这张图,我们展示了一个度$\mathbf d$与$\mathbf 0'<\mathbf d<\mathbf0''$不是刚性结构的可分类度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degrees of categoricity and treeable degrees
We give a characterization of the strong degrees of categoricity of computable structures greater or equal to $\mathbf 0''$. They are precisely the \emph{treeable} degrees -- the least degrees of paths through computable trees -- that compute $\mathbf 0''$. As a corollary, we obtain several new examples of degrees of categoricity. Among them we show that every degree $\mathbf d$ with $\mathbf 0^{(\alpha)}\leq \mathbf d\leq \mathbf 0^{(\alpha+1)}$ for $\alpha$ a computable ordinal greater than $2$ is the strong degree of categoricity of a rigid structure. Using quite different techniques we show that every degree $\mathbf d$ with $\mathbf 0'\leq \mathbf d\leq \mathbf 0''$ is the strong degree of categoricity of a structure. Together with the above example this answers a question of Csima and Ng. To complete the picture we show that there is a degree $\mathbf d$ with $\mathbf 0'<\mathbf d<\mathbf 0''$ that is not the degree of categoricity of a rigid structure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Logic
Journal of Mathematical Logic MATHEMATICS-LOGIC
CiteScore
1.60
自引率
11.10%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Journal of Mathematical Logic (JML) provides an important forum for the communication of original contributions in all areas of mathematical logic and its applications. It aims at publishing papers at the highest level of mathematical creativity and sophistication. JML intends to represent the most important and innovative developments in the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信