{"title":"Benoist 3-流形的Bowen–Margulis测度的遍历性","authors":"Harrison Bray","doi":"10.3934/jmd.2020011","DOIUrl":null,"url":null,"abstract":"We study the geodesic flow of a class of 3-manifolds introduced by Benoist which have some hyperbolicity but are non-Riemannian, not CAT(0), and with non-C^1 geodesic flow. The geometries are nonstrictly convex Hilbert geometries in dimension three which admit compact quotient manifolds by discrete groups of projective transformations. We prove the Patterson-Sullivan density is canonical, with applications to counting, and construct explicitly the Bowen-Margulis measure of maximal entropy. The main result of this work is ergodicity of the Bowen-Margulis measure.","PeriodicalId":51087,"journal":{"name":"Journal of Modern Dynamics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds\",\"authors\":\"Harrison Bray\",\"doi\":\"10.3934/jmd.2020011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the geodesic flow of a class of 3-manifolds introduced by Benoist which have some hyperbolicity but are non-Riemannian, not CAT(0), and with non-C^1 geodesic flow. The geometries are nonstrictly convex Hilbert geometries in dimension three which admit compact quotient manifolds by discrete groups of projective transformations. We prove the Patterson-Sullivan density is canonical, with applications to counting, and construct explicitly the Bowen-Margulis measure of maximal entropy. The main result of this work is ergodicity of the Bowen-Margulis measure.\",\"PeriodicalId\":51087,\"journal\":{\"name\":\"Journal of Modern Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2017-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Modern Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3934/jmd.2020011\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Modern Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/jmd.2020011","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Ergodicity of Bowen–Margulis measure for the Benoist 3-manifolds
We study the geodesic flow of a class of 3-manifolds introduced by Benoist which have some hyperbolicity but are non-Riemannian, not CAT(0), and with non-C^1 geodesic flow. The geometries are nonstrictly convex Hilbert geometries in dimension three which admit compact quotient manifolds by discrete groups of projective transformations. We prove the Patterson-Sullivan density is canonical, with applications to counting, and construct explicitly the Bowen-Margulis measure of maximal entropy. The main result of this work is ergodicity of the Bowen-Margulis measure.
期刊介绍:
The Journal of Modern Dynamics (JMD) is dedicated to publishing research articles in active and promising areas in the theory of dynamical systems with particular emphasis on the mutual interaction between dynamics and other major areas of mathematical research, including:
Number theory
Symplectic geometry
Differential geometry
Rigidity
Quantum chaos
Teichmüller theory
Geometric group theory
Harmonic analysis on manifolds.
The journal is published by the American Institute of Mathematical Sciences (AIMS) with the support of the Anatole Katok Center for Dynamical Systems and Geometry at the Pennsylvania State University.