关于双心四边形的六个共线点

Q4 Mathematics
Hans Humenberger
{"title":"关于双心四边形的六个共线点","authors":"Hans Humenberger","doi":"10.1080/0025570X.2023.2204789","DOIUrl":null,"url":null,"abstract":"Summary We generalize the concept of the Bevan point and the Bevan circle to a special sort of quadrilateral, so-called bicentric quadrilaterals, which have—like triangles—both an incenter and a circumcenter. As with triangles, the Bevan point V is the reflection of the incenter I over the circumcenter O. There are three other known points on the straight line through V, I, O, thus giving at least six collinear points on this straight line. We also deal with special homotheties, giving primarily synthetic and elementary proofs.","PeriodicalId":18344,"journal":{"name":"Mathematics Magazine","volume":"96 1","pages":"285 - 295"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Six Collinear Points in Bicentric Quadrilaterals\",\"authors\":\"Hans Humenberger\",\"doi\":\"10.1080/0025570X.2023.2204789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary We generalize the concept of the Bevan point and the Bevan circle to a special sort of quadrilateral, so-called bicentric quadrilaterals, which have—like triangles—both an incenter and a circumcenter. As with triangles, the Bevan point V is the reflection of the incenter I over the circumcenter O. There are three other known points on the straight line through V, I, O, thus giving at least six collinear points on this straight line. We also deal with special homotheties, giving primarily synthetic and elementary proofs.\",\"PeriodicalId\":18344,\"journal\":{\"name\":\"Mathematics Magazine\",\"volume\":\"96 1\",\"pages\":\"285 - 295\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics Magazine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/0025570X.2023.2204789\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics Magazine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/0025570X.2023.2204789","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们将贝万点和贝万圆的概念推广到一种特殊的四边形,即所谓的双心四边形,它有一个类似三角形的中心和一个圆心。和三角形一样,贝万点V是圆心I在圆心O上的反射。在经过V、I、O的直线上还有三个已知的点,因此在这条直线上至少有六个共线点。我们还处理了一些特殊的同理,主要给出了综合证明和初等证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Six Collinear Points in Bicentric Quadrilaterals
Summary We generalize the concept of the Bevan point and the Bevan circle to a special sort of quadrilateral, so-called bicentric quadrilaterals, which have—like triangles—both an incenter and a circumcenter. As with triangles, the Bevan point V is the reflection of the incenter I over the circumcenter O. There are three other known points on the straight line through V, I, O, thus giving at least six collinear points on this straight line. We also deal with special homotheties, giving primarily synthetic and elementary proofs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematics Magazine
Mathematics Magazine Mathematics-Mathematics (all)
CiteScore
0.20
自引率
0.00%
发文量
68
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信