基于支持向量机的机械臂系统目标分类

Q2 Computer Science
V. Cong, Thai Thanh Hiep
{"title":"基于支持向量机的机械臂系统目标分类","authors":"V. Cong, Thai Thanh Hiep","doi":"10.11591/ijece.v13i5.pp5047-5053","DOIUrl":null,"url":null,"abstract":"In this paper, a support vector machine (SVM) model is trained to classify objects in the automatic sorting system using a robot arm. The robot arm is used to grab objects and move them to the right position according to their shape predicted by the SVM model. The position of objects in the image is identified by using the contouring technique. The centroid of objects is calculated from the image moment of the object's contour. The calibration is conducted to get the parameters of the camera and combine with the pinhole camera model to compute the 3D position of the objects. The feature vector for SVM training is the zone feature and the SVM kernel is the Gaussian kernel. In the experiment, the SVM model is used to classify four objects with different shapes. The results show that the accuracy of the SVM classifier is 99.72%, 99.4%, 99.4% and 99.88% for four objects, respectively.","PeriodicalId":38060,"journal":{"name":"International Journal of Electrical and Computer Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Support vector machine-based object classification for robot arm system\",\"authors\":\"V. Cong, Thai Thanh Hiep\",\"doi\":\"10.11591/ijece.v13i5.pp5047-5053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a support vector machine (SVM) model is trained to classify objects in the automatic sorting system using a robot arm. The robot arm is used to grab objects and move them to the right position according to their shape predicted by the SVM model. The position of objects in the image is identified by using the contouring technique. The centroid of objects is calculated from the image moment of the object's contour. The calibration is conducted to get the parameters of the camera and combine with the pinhole camera model to compute the 3D position of the objects. The feature vector for SVM training is the zone feature and the SVM kernel is the Gaussian kernel. In the experiment, the SVM model is used to classify four objects with different shapes. The results show that the accuracy of the SVM classifier is 99.72%, 99.4%, 99.4% and 99.88% for four objects, respectively.\",\"PeriodicalId\":38060,\"journal\":{\"name\":\"International Journal of Electrical and Computer Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrical and Computer Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11591/ijece.v13i5.pp5047-5053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrical and Computer Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/ijece.v13i5.pp5047-5053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

本文训练了一个支持向量机(SVM)模型,用于在使用机械臂的自动分拣系统中对物体进行分类。机器人手臂用于抓取物体,并根据SVM模型预测的物体形状将其移动到正确的位置。物体在图像中的位置是通过使用轮廓技术来识别的。物体的质心是根据物体轮廓的图像矩来计算的。进行校准以获得相机的参数,并与针孔相机模型相结合来计算物体的三维位置。SVM训练的特征向量是区域特征,SVM核是高斯核。在实验中,SVM模型被用于对四个不同形状的物体进行分类。结果表明,SVM分类器对四个对象的准确率分别为99.72%、99.4%、99.4%和99.88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Support vector machine-based object classification for robot arm system
In this paper, a support vector machine (SVM) model is trained to classify objects in the automatic sorting system using a robot arm. The robot arm is used to grab objects and move them to the right position according to their shape predicted by the SVM model. The position of objects in the image is identified by using the contouring technique. The centroid of objects is calculated from the image moment of the object's contour. The calibration is conducted to get the parameters of the camera and combine with the pinhole camera model to compute the 3D position of the objects. The feature vector for SVM training is the zone feature and the SVM kernel is the Gaussian kernel. In the experiment, the SVM model is used to classify four objects with different shapes. The results show that the accuracy of the SVM classifier is 99.72%, 99.4%, 99.4% and 99.88% for four objects, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Electrical and Computer Engineering
International Journal of Electrical and Computer Engineering Computer Science-Computer Science (all)
CiteScore
4.10
自引率
0.00%
发文量
177
期刊介绍: International Journal of Electrical and Computer Engineering (IJECE) is the official publication of the Institute of Advanced Engineering and Science (IAES). The journal is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: -Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation, Medical Imaging Equipment and Techniques, Biomedical Imaging and Image Processing, Biomechanics and Rehabilitation Engineering, Biomaterials and Drug Delivery Systems; -Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction, Electromagnetic Compatibility, High Voltage Insulation Technologies, High Voltage Apparatuses, Lightning Detection and Protection, Power System Analysis, SCADA, Electrical Measurements; -Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging, Distributed Platform, Communication Network and Systems, Telematics Services and Security Network; -Control[...] -Computer and Informatics[...]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信