{"title":"不完全gamma函数的精确下界和上界","authors":"I. Pinelis","doi":"10.7153/mia-2020-23-95","DOIUrl":null,"url":null,"abstract":"Lower and upper bounds $B_a(x)$ on the incomplete gamma function $\\Gamma(a,x)$ are given for all real $a$ and all real $x>0$. These bounds $B_a(x)$ are exact in the sense that $B_a(x)\\underset{x\\downarrow0}\\sim\\Gamma(a,x)$ and $B_a(x)\\underset{x\\to\\infty}\\sim\\Gamma(a,x)$. Moreover, the relative errors of these bounds are rather small for other values of $x$, away from $0$ and $\\infty$.","PeriodicalId":49868,"journal":{"name":"Mathematical Inequalities & Applications","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Exact lower and upper bounds on the incomplete gamma function\",\"authors\":\"I. Pinelis\",\"doi\":\"10.7153/mia-2020-23-95\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lower and upper bounds $B_a(x)$ on the incomplete gamma function $\\\\Gamma(a,x)$ are given for all real $a$ and all real $x>0$. These bounds $B_a(x)$ are exact in the sense that $B_a(x)\\\\underset{x\\\\downarrow0}\\\\sim\\\\Gamma(a,x)$ and $B_a(x)\\\\underset{x\\\\to\\\\infty}\\\\sim\\\\Gamma(a,x)$. Moreover, the relative errors of these bounds are rather small for other values of $x$, away from $0$ and $\\\\infty$.\",\"PeriodicalId\":49868,\"journal\":{\"name\":\"Mathematical Inequalities & Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2020-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Inequalities & Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.7153/mia-2020-23-95\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Inequalities & Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.7153/mia-2020-23-95","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Exact lower and upper bounds on the incomplete gamma function
Lower and upper bounds $B_a(x)$ on the incomplete gamma function $\Gamma(a,x)$ are given for all real $a$ and all real $x>0$. These bounds $B_a(x)$ are exact in the sense that $B_a(x)\underset{x\downarrow0}\sim\Gamma(a,x)$ and $B_a(x)\underset{x\to\infty}\sim\Gamma(a,x)$. Moreover, the relative errors of these bounds are rather small for other values of $x$, away from $0$ and $\infty$.
期刊介绍:
''Mathematical Inequalities & Applications'' (''MIA'') brings together original research papers in all areas of mathematics, provided they are concerned with inequalities or their role. From time to time ''MIA'' will publish invited survey articles. Short notes with interesting results or open problems will also be accepted. ''MIA'' is published quarterly, in January, April, July, and October.