均匀温度场作用下功能梯度Al2O3胶粘剂单搭接接头的热应力形成

IF 1.9 Q2 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
M. Apalak, J. Reddy
{"title":"均匀温度场作用下功能梯度Al2O3胶粘剂单搭接接头的热应力形成","authors":"M. Apalak, J. Reddy","doi":"10.3390/mca28040082","DOIUrl":null,"url":null,"abstract":"This study investigates the strain and stress states in an aluminum single lap joint bonded with a functionally graded Al2O3 micro particle reinforced adhesive layer subjected to a uniform temperature field. Navier equations of elasticity theory were designated by considering the spatial derivatives of Lamé constants and the coefficient of thermal expansion for local material composition. The set of partial differential equations and mechanical boundary conditions for a two-dimensional model was reduced to a set of linear equations by means of the central finite difference approximation at each grid point of a discretized joint. The through-thickness Al2O3-adhesive composition was tailored by the functional grading concept, and the mechanical and thermal properties of local adhesive composition were predicted by Mori–Tanaka’s homogenization approach. The adherend–adhesive interfaces exhibited sharp discontinuous thermal stresses, whereas the discontinuous nature of thermal strains along bi-material interfaces can be moderated by the gradient power index, which controls the through-thickness variation of particle amount in the local adhesive composition. The free edges of the adhesive layer were also critical due to the occurrence of high normal and shear strains and stresses. The gradient power index can influence the distribution and levels of strain and stress components only for a sufficiently high volume fraction of particles. The grading direction of particles in the adhesive layer was not influential because the temperature field is uniform; namely, it can only upturn the low and high strain and stress regions so that the neat adhesive–adherend interface and the particle-rich adhesive–adherend interface can be relocated.","PeriodicalId":53224,"journal":{"name":"Mathematical & Computational Applications","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2023-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal Stress Formation in a Functionally Graded Al2O3-Adhesive Single Lap Joint Subjected to a Uniform Temperature Field\",\"authors\":\"M. Apalak, J. Reddy\",\"doi\":\"10.3390/mca28040082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study investigates the strain and stress states in an aluminum single lap joint bonded with a functionally graded Al2O3 micro particle reinforced adhesive layer subjected to a uniform temperature field. Navier equations of elasticity theory were designated by considering the spatial derivatives of Lamé constants and the coefficient of thermal expansion for local material composition. The set of partial differential equations and mechanical boundary conditions for a two-dimensional model was reduced to a set of linear equations by means of the central finite difference approximation at each grid point of a discretized joint. The through-thickness Al2O3-adhesive composition was tailored by the functional grading concept, and the mechanical and thermal properties of local adhesive composition were predicted by Mori–Tanaka’s homogenization approach. The adherend–adhesive interfaces exhibited sharp discontinuous thermal stresses, whereas the discontinuous nature of thermal strains along bi-material interfaces can be moderated by the gradient power index, which controls the through-thickness variation of particle amount in the local adhesive composition. The free edges of the adhesive layer were also critical due to the occurrence of high normal and shear strains and stresses. The gradient power index can influence the distribution and levels of strain and stress components only for a sufficiently high volume fraction of particles. The grading direction of particles in the adhesive layer was not influential because the temperature field is uniform; namely, it can only upturn the low and high strain and stress regions so that the neat adhesive–adherend interface and the particle-rich adhesive–adherend interface can be relocated.\",\"PeriodicalId\":53224,\"journal\":{\"name\":\"Mathematical & Computational Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical & Computational Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mca28040082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical & Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28040082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

研究了均匀温度场作用下功能梯度Al2O3微颗粒增强粘结层粘结铝单搭接接头的应变和应力状态。考虑局部材料组成的lam常数和热膨胀系数的空间导数,给出了弹性理论的Navier方程。通过离散关节各网格点的中心有限差分逼近,将二维模型的偏微分方程和力学边界条件简化为线性方程组。采用功能分级概念对全厚度al2o3 -胶粘剂组合物进行了定制,并采用Mori-Tanaka的均质化方法预测了局部胶粘剂组合物的力学和热性能。黏着-黏着界面表现出明显的不连续热应力,而沿双材料界面的热应变的不连续性质可以通过梯度幂指数来缓和,梯度幂指数控制了局部黏着成分中颗粒量的穿过厚度变化。粘接层的自由边缘也很关键,因为发生了高的法向和剪切应变和应力。梯度功率指数只有在足够高的颗粒体积分数时才能影响应变和应力分量的分布和水平。由于温度场均匀,胶粘剂层内颗粒的级配方向不受影响;也就是说,它只能将低应变和高应变和应力区域向上翻转,从而使整洁的粘接界面和富含颗粒的粘接界面重新定位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal Stress Formation in a Functionally Graded Al2O3-Adhesive Single Lap Joint Subjected to a Uniform Temperature Field
This study investigates the strain and stress states in an aluminum single lap joint bonded with a functionally graded Al2O3 micro particle reinforced adhesive layer subjected to a uniform temperature field. Navier equations of elasticity theory were designated by considering the spatial derivatives of Lamé constants and the coefficient of thermal expansion for local material composition. The set of partial differential equations and mechanical boundary conditions for a two-dimensional model was reduced to a set of linear equations by means of the central finite difference approximation at each grid point of a discretized joint. The through-thickness Al2O3-adhesive composition was tailored by the functional grading concept, and the mechanical and thermal properties of local adhesive composition were predicted by Mori–Tanaka’s homogenization approach. The adherend–adhesive interfaces exhibited sharp discontinuous thermal stresses, whereas the discontinuous nature of thermal strains along bi-material interfaces can be moderated by the gradient power index, which controls the through-thickness variation of particle amount in the local adhesive composition. The free edges of the adhesive layer were also critical due to the occurrence of high normal and shear strains and stresses. The gradient power index can influence the distribution and levels of strain and stress components only for a sufficiently high volume fraction of particles. The grading direction of particles in the adhesive layer was not influential because the temperature field is uniform; namely, it can only upturn the low and high strain and stress regions so that the neat adhesive–adherend interface and the particle-rich adhesive–adherend interface can be relocated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematical & Computational Applications
Mathematical & Computational Applications MATHEMATICS, INTERDISCIPLINARY APPLICATIONS-
自引率
10.50%
发文量
86
审稿时长
12 weeks
期刊介绍: Mathematical and Computational Applications (MCA) is devoted to original research in the field of engineering, natural sciences or social sciences where mathematical and/or computational techniques are necessary for solving specific problems. The aim of the journal is to provide a medium by which a wide range of experience can be exchanged among researchers from diverse fields such as engineering (electrical, mechanical, civil, industrial, aeronautical, nuclear etc.), natural sciences (physics, mathematics, chemistry, biology etc.) or social sciences (administrative sciences, economics, political sciences etc.). The papers may be theoretical where mathematics is used in a nontrivial way or computational or combination of both. Each paper submitted will be reviewed and only papers of highest quality that contain original ideas and research will be published. Papers containing only experimental techniques and abstract mathematics without any sign of application are discouraged.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信