强单调动力系统中可观测混沌的不存在性及其鲁棒性

IF 0.8 4区 数学 Q3 STATISTICS & PROBABILITY
Yi Wang, Jinxiang Yao
{"title":"强单调动力系统中可观测混沌的不存在性及其鲁棒性","authors":"Yi Wang, Jinxiang Yao","doi":"10.1142/s0219493722400408","DOIUrl":null,"url":null,"abstract":"For strongly monotone dynamical systems on a Banach space, we show that the largest Lyapunov exponent λ max > 0 holds on a shy set in the measure-theoretic sense. This exhibits that strongly monotone dynamical systems admit no observable chaos, the notion of which was formulated by L.S. Young. We further show that such phenomenon of no observable chaos is robust under the C 1 -perturbation of the systems.","PeriodicalId":51170,"journal":{"name":"Stochastics and Dynamics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2022-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonexistence of observable chaos and its robustness in strongly monotone dynamical systems\",\"authors\":\"Yi Wang, Jinxiang Yao\",\"doi\":\"10.1142/s0219493722400408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For strongly monotone dynamical systems on a Banach space, we show that the largest Lyapunov exponent λ max > 0 holds on a shy set in the measure-theoretic sense. This exhibits that strongly monotone dynamical systems admit no observable chaos, the notion of which was formulated by L.S. Young. We further show that such phenomenon of no observable chaos is robust under the C 1 -perturbation of the systems.\",\"PeriodicalId\":51170,\"journal\":{\"name\":\"Stochastics and Dynamics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Stochastics and Dynamics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219493722400408\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stochastics and Dynamics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219493722400408","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

对于Banach空间上的强单调动力系统,我们证明了在测度论意义上,最大Lyapunov指数λ max >在一个shy集合上成立。这表明强单调动力系统不承认可观察到的混沌,混沌的概念是由L.S. Young提出的。进一步证明了系统在c1 -扰动下无可见混沌现象的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonexistence of observable chaos and its robustness in strongly monotone dynamical systems
For strongly monotone dynamical systems on a Banach space, we show that the largest Lyapunov exponent λ max > 0 holds on a shy set in the measure-theoretic sense. This exhibits that strongly monotone dynamical systems admit no observable chaos, the notion of which was formulated by L.S. Young. We further show that such phenomenon of no observable chaos is robust under the C 1 -perturbation of the systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Stochastics and Dynamics
Stochastics and Dynamics 数学-统计学与概率论
CiteScore
1.70
自引率
0.00%
发文量
49
审稿时长
>12 weeks
期刊介绍: This interdisciplinary journal is devoted to publishing high quality papers in modeling, analyzing, quantifying and predicting stochastic phenomena in science and engineering from a dynamical system''s point of view. Papers can be about theory, experiments, algorithms, numerical simulation and applications. Papers studying the dynamics of stochastic phenomena by means of random or stochastic ordinary, partial or functional differential equations or random mappings are particularly welcome, and so are studies of stochasticity in deterministic systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信