具有内阻尼的von Kármán系统的指数稳定性

IF 0.8 4区 数学 Q2 MATHEMATICS
C. Raposo, Roseane Martins, J. Ribeiro, O. Vera
{"title":"具有内阻尼的von Kármán系统的指数稳定性","authors":"C. Raposo, Roseane Martins, J. Ribeiro, O. Vera","doi":"10.1515/gmj-2023-2063","DOIUrl":null,"url":null,"abstract":"Abstract This work deals with a von Kármán system with internal damping. For the solution’s existence, we use nonlinear semigroup theory tools. We construct an evolution system by nonlinear Lipschitz perturbation of a semigroup of contractions. We apply the energy method for the asymptotic behavior, which uses suitable multipliers to construct a Lyapunov functional that leads to exponential decay.","PeriodicalId":55101,"journal":{"name":"Georgian Mathematical Journal","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential stability of the von Kármán system with internal damping\",\"authors\":\"C. Raposo, Roseane Martins, J. Ribeiro, O. Vera\",\"doi\":\"10.1515/gmj-2023-2063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract This work deals with a von Kármán system with internal damping. For the solution’s existence, we use nonlinear semigroup theory tools. We construct an evolution system by nonlinear Lipschitz perturbation of a semigroup of contractions. We apply the energy method for the asymptotic behavior, which uses suitable multipliers to construct a Lyapunov functional that leads to exponential decay.\",\"PeriodicalId\":55101,\"journal\":{\"name\":\"Georgian Mathematical Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Georgian Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/gmj-2023-2063\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Georgian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/gmj-2023-2063","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文研究了一个具有内阻尼的von Kármán系统。对于解的存在性,我们使用非线性半群理论工具。利用压缩半群的非线性Lipschitz摄动构造了一个演化系统。我们将能量方法应用于渐近行为,该方法使用合适的乘法器来构造导致指数衰减的李亚普诺夫函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential stability of the von Kármán system with internal damping
Abstract This work deals with a von Kármán system with internal damping. For the solution’s existence, we use nonlinear semigroup theory tools. We construct an evolution system by nonlinear Lipschitz perturbation of a semigroup of contractions. We apply the energy method for the asymptotic behavior, which uses suitable multipliers to construct a Lyapunov functional that leads to exponential decay.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
76
审稿时长
>12 weeks
期刊介绍: The Georgian Mathematical Journal was founded by the Georgian National Academy of Sciences and A. Razmadze Mathematical Institute, and is jointly produced with De Gruyter. The concern of this international journal is the publication of research articles of best scientific standard in pure and applied mathematics. Special emphasis is put on the presentation of results obtained by Georgian mathematicians.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信