{"title":"nevanlinna型空间的乘数和对偶的表征","authors":"Mieczysław Mastyło, Bartosz Staniów","doi":"10.1017/nmj.2023.24","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>The Nevanlinna-type spaces <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline1.png\" />\n\t\t<jats:tex-math>\n$N_\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> of analytic functions on the disk in the complex plane generated by strongly convex functions <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline2.png\" />\n\t\t<jats:tex-math>\n$\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> in the sense of Rudin are studied. We show for some special class of strongly convex functions asymptotic bounds on the growth of the Taylor coefficients of a function in <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline3.png\" />\n\t\t<jats:tex-math>\n$N_\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and use these to characterize the coefficient multipliers from <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline4.png\" />\n\t\t<jats:tex-math>\n$N_\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> into the Hardy spaces <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline5.png\" />\n\t\t<jats:tex-math>\n$H^p$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> with <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline6.png\" />\n\t\t<jats:tex-math>\n$0<p\\leqslant \\infty $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. As a by-product, we prove a representation of continuous linear functionals on <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0027763023000247_inline7.png\" />\n\t\t<jats:tex-math>\n$N_\\varphi $\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>.</jats:p>","PeriodicalId":49785,"journal":{"name":"Nagoya Mathematical Journal","volume":"1 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MULTIPLIERS AND CHARACTERIZATION OF THE DUAL OF NEVANLINNA-TYPE SPACES\",\"authors\":\"Mieczysław Mastyło, Bartosz Staniów\",\"doi\":\"10.1017/nmj.2023.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\t <jats:p>The Nevanlinna-type spaces <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000247_inline1.png\\\" />\\n\\t\\t<jats:tex-math>\\n$N_\\\\varphi $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> of analytic functions on the disk in the complex plane generated by strongly convex functions <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000247_inline2.png\\\" />\\n\\t\\t<jats:tex-math>\\n$\\\\varphi $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> in the sense of Rudin are studied. We show for some special class of strongly convex functions asymptotic bounds on the growth of the Taylor coefficients of a function in <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000247_inline3.png\\\" />\\n\\t\\t<jats:tex-math>\\n$N_\\\\varphi $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> and use these to characterize the coefficient multipliers from <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000247_inline4.png\\\" />\\n\\t\\t<jats:tex-math>\\n$N_\\\\varphi $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> into the Hardy spaces <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000247_inline5.png\\\" />\\n\\t\\t<jats:tex-math>\\n$H^p$\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula> with <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000247_inline6.png\\\" />\\n\\t\\t<jats:tex-math>\\n$0<p\\\\leqslant \\\\infty $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>. As a by-product, we prove a representation of continuous linear functionals on <jats:inline-formula>\\n\\t <jats:alternatives>\\n\\t\\t<jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0027763023000247_inline7.png\\\" />\\n\\t\\t<jats:tex-math>\\n$N_\\\\varphi $\\n</jats:tex-math>\\n\\t </jats:alternatives>\\n\\t </jats:inline-formula>.</jats:p>\",\"PeriodicalId\":49785,\"journal\":{\"name\":\"Nagoya Mathematical Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nagoya Mathematical Journal\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/nmj.2023.24\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nagoya Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/nmj.2023.24","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
MULTIPLIERS AND CHARACTERIZATION OF THE DUAL OF NEVANLINNA-TYPE SPACES
The Nevanlinna-type spaces
$N_\varphi $
of analytic functions on the disk in the complex plane generated by strongly convex functions
$\varphi $
in the sense of Rudin are studied. We show for some special class of strongly convex functions asymptotic bounds on the growth of the Taylor coefficients of a function in
$N_\varphi $
and use these to characterize the coefficient multipliers from
$N_\varphi $
into the Hardy spaces
$H^p$
with
$0
. As a by-product, we prove a representation of continuous linear functionals on
$N_\varphi $
.
期刊介绍:
The Nagoya Mathematical Journal is published quarterly. Since its formation in 1950 by a group led by Tadashi Nakayama, the journal has endeavoured to publish original research papers of the highest quality and of general interest, covering a broad range of pure mathematics. The journal is owned by Foundation Nagoya Mathematical Journal, which uses the proceeds from the journal to support mathematics worldwide.