混凝土多尺度建模的未来——走向水泥化学与混凝土结构工程的全面融合

Q2 Engineering
T. Ishida, Tiao Wang
{"title":"混凝土多尺度建模的未来——走向水泥化学与混凝土结构工程的全面融合","authors":"T. Ishida, Tiao Wang","doi":"10.21809/RILEMTECHLETT.2018.60","DOIUrl":null,"url":null,"abstract":"The use of supplementary cementitious materials (SCMs) to improve concrete performance has increased around the world in recent decades. Engineering practices demand a unified model for SCMs to predict and optimise the performance of blended concrete.DuCOM-COM3 is a multi-chemo-physical and multiscale analysis platform that can trace the whole-life behaviour and performance of reinforced concrete structures. However, the intrinsic heterogeneity and variability of SCMs present great challenges to the modelling of blended concrete. This paper first reviews the challenges and difficulties of current models of blended concrete. A multiphase modelling scheme based on DuCOM-COM3 analysis platform is introduced to consider different SCMs. Using the modelling scheme, a research road map for blended concrete modelling is introduced for future study. It is hoped that the roadmap will help to reveal the mechanism of SCM reactions and their effect on concrete performance. \n ","PeriodicalId":36420,"journal":{"name":"RILEM Technical Letters","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Future of multiscale modelling of concrete - Toward a full integration of cement chemistry and concrete structural engineering\",\"authors\":\"T. Ishida, Tiao Wang\",\"doi\":\"10.21809/RILEMTECHLETT.2018.60\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of supplementary cementitious materials (SCMs) to improve concrete performance has increased around the world in recent decades. Engineering practices demand a unified model for SCMs to predict and optimise the performance of blended concrete.DuCOM-COM3 is a multi-chemo-physical and multiscale analysis platform that can trace the whole-life behaviour and performance of reinforced concrete structures. However, the intrinsic heterogeneity and variability of SCMs present great challenges to the modelling of blended concrete. This paper first reviews the challenges and difficulties of current models of blended concrete. A multiphase modelling scheme based on DuCOM-COM3 analysis platform is introduced to consider different SCMs. Using the modelling scheme, a research road map for blended concrete modelling is introduced for future study. It is hoped that the roadmap will help to reveal the mechanism of SCM reactions and their effect on concrete performance. \\n \",\"PeriodicalId\":36420,\"journal\":{\"name\":\"RILEM Technical Letters\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RILEM Technical Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21809/RILEMTECHLETT.2018.60\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RILEM Technical Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21809/RILEMTECHLETT.2018.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

摘要

近几十年来,世界各地越来越多地使用补充胶凝材料来提高混凝土性能。工程实践需要SCM的统一模型来预测和优化混合混凝土的性能。DuCOM-COM3是一个多化学物理和多尺度分析平台,可以跟踪钢筋混凝土结构的全寿命行为和性能。然而,SCMs的内在异质性和可变性对混合混凝土的建模提出了巨大挑战。本文首先回顾了目前掺合混凝土模型面临的挑战和困难。介绍了一种基于DuCOM-COM3分析平台的多相建模方案,以考虑不同的SCM。利用该建模方案,介绍了混合混凝土建模的研究路线图,以供未来研究。希望该路线图将有助于揭示供应链管理反应的机制及其对具体绩效的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Future of multiscale modelling of concrete - Toward a full integration of cement chemistry and concrete structural engineering
The use of supplementary cementitious materials (SCMs) to improve concrete performance has increased around the world in recent decades. Engineering practices demand a unified model for SCMs to predict and optimise the performance of blended concrete.DuCOM-COM3 is a multi-chemo-physical and multiscale analysis platform that can trace the whole-life behaviour and performance of reinforced concrete structures. However, the intrinsic heterogeneity and variability of SCMs present great challenges to the modelling of blended concrete. This paper first reviews the challenges and difficulties of current models of blended concrete. A multiphase modelling scheme based on DuCOM-COM3 analysis platform is introduced to consider different SCMs. Using the modelling scheme, a research road map for blended concrete modelling is introduced for future study. It is hoped that the roadmap will help to reveal the mechanism of SCM reactions and their effect on concrete performance.  
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
RILEM Technical Letters
RILEM Technical Letters Materials Science-Materials Science (all)
CiteScore
5.00
自引率
0.00%
发文量
13
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信