{"title":"A-Davis-Wielandt-Berezin半径不等式","authors":"V. Gürdal, M. Huban","doi":"10.31801/cfsuasmas.1107024","DOIUrl":null,"url":null,"abstract":"We consider operator $V$ on the reproducing kernel Hilbert space $\\mathcal{H}=\\mathcal{H}(\\Omega)$ over some set $\\Omega$ with the reproducing kernel \n$K_{\\mathcal{H},\\lambda}(z)=K(z,\\lambda)$ and define A-Davis-Wielandt-Berezin radius $\\eta_{A}(V)$ by the formula \n$\\eta_{A}(V):=sup\\{\\sqrt{| \\langle Vk_{\\mathcal{H},\\lambda},k_{\\mathcal{H},\\lambda} \\rangle_{A}|^{2}+\\|Vk_{\\mathcal{H},\\lambda}\\|_{A}^{4}}:\\lambda \\in \\Omega\\}$\nand $\\tilde{V}$ is the Berezin symbol of $V$ where any positive operator $A$-induces a semi-inner product on $\\mathcal{H}$ is defined by $\\langle x,y \\rangle_{A}=\\langle Ax,y \\rangle$ for $x,y \\in \\mathcal{H}.$ We study equality of the lower bounds for A-Davis-Wielandt-Berezin radius mentioned above. We establish some lower and upper bounds for the A-Davis-Wielandt-Berezin radius of reproducing kernel Hilbert space operators. In addition, we get an upper bound for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A-Davis-Wielandt-Berezin radius inequalities\",\"authors\":\"V. Gürdal, M. Huban\",\"doi\":\"10.31801/cfsuasmas.1107024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider operator $V$ on the reproducing kernel Hilbert space $\\\\mathcal{H}=\\\\mathcal{H}(\\\\Omega)$ over some set $\\\\Omega$ with the reproducing kernel \\n$K_{\\\\mathcal{H},\\\\lambda}(z)=K(z,\\\\lambda)$ and define A-Davis-Wielandt-Berezin radius $\\\\eta_{A}(V)$ by the formula \\n$\\\\eta_{A}(V):=sup\\\\{\\\\sqrt{| \\\\langle Vk_{\\\\mathcal{H},\\\\lambda},k_{\\\\mathcal{H},\\\\lambda} \\\\rangle_{A}|^{2}+\\\\|Vk_{\\\\mathcal{H},\\\\lambda}\\\\|_{A}^{4}}:\\\\lambda \\\\in \\\\Omega\\\\}$\\nand $\\\\tilde{V}$ is the Berezin symbol of $V$ where any positive operator $A$-induces a semi-inner product on $\\\\mathcal{H}$ is defined by $\\\\langle x,y \\\\rangle_{A}=\\\\langle Ax,y \\\\rangle$ for $x,y \\\\in \\\\mathcal{H}.$ We study equality of the lower bounds for A-Davis-Wielandt-Berezin radius mentioned above. We establish some lower and upper bounds for the A-Davis-Wielandt-Berezin radius of reproducing kernel Hilbert space operators. In addition, we get an upper bound for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1107024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1107024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
We consider operator $V$ on the reproducing kernel Hilbert space $\mathcal{H}=\mathcal{H}(\Omega)$ over some set $\Omega$ with the reproducing kernel
$K_{\mathcal{H},\lambda}(z)=K(z,\lambda)$ and define A-Davis-Wielandt-Berezin radius $\eta_{A}(V)$ by the formula
$\eta_{A}(V):=sup\{\sqrt{| \langle Vk_{\mathcal{H},\lambda},k_{\mathcal{H},\lambda} \rangle_{A}|^{2}+\|Vk_{\mathcal{H},\lambda}\|_{A}^{4}}:\lambda \in \Omega\}$
and $\tilde{V}$ is the Berezin symbol of $V$ where any positive operator $A$-induces a semi-inner product on $\mathcal{H}$ is defined by $\langle x,y \rangle_{A}=\langle Ax,y \rangle$ for $x,y \in \mathcal{H}.$ We study equality of the lower bounds for A-Davis-Wielandt-Berezin radius mentioned above. We establish some lower and upper bounds for the A-Davis-Wielandt-Berezin radius of reproducing kernel Hilbert space operators. In addition, we get an upper bound for the A-Davis-Wielandt-Berezin radius of sum of two bounded linear operators.