材料等离子体暴露实验高热通量微波吸收剂的设计、制造和制品测试

IF 0.9 4区 工程技术 Q3 NUCLEAR SCIENCE & TECHNOLOGY
A. Hussain, V. Rao, N. Branch, T. Gray, A. Kubik, A. Aaron, K. Logan, S. Stewart, A. Lumsdaine, G. S. Showers, R. L. Romesberg, D. Wolfe
{"title":"材料等离子体暴露实验高热通量微波吸收剂的设计、制造和制品测试","authors":"A. Hussain, V. Rao, N. Branch, T. Gray, A. Kubik, A. Aaron, K. Logan, S. Stewart, A. Lumsdaine, G. S. Showers, R. L. Romesberg, D. Wolfe","doi":"10.1080/15361055.2023.2221153","DOIUrl":null,"url":null,"abstract":"Abstract The Material Plasma Exposure eXperiment (MPEX) at Oak Ridge National Laboratory is in the final design phase. MPEX will be capable of exposing neutron-irradiated materials to plasmas for the study of plasma-material interaction. This facility will provide information about the complex effects of plasmas on materials and contribute to examining new materials that can withstand high heat fluxes and high ion fluences for future fusion devices. MPEX plasma is heated by 70-GHz or 105-GHz electron Bernstein wave/electron cyclotron heating (ECH), and the high-frequency microwaves are prone to scattering microwave power, which can have detrimental effects, especially on diagnostic components. A large portion of the injected ECH power is expected to be absorbed by plasma, but the remainder requires that microwave absorbers be placed immediately upstream and downstream of the ECH launcher to minimize stray microwaves leaving the ECH region. These microwaves can inadvertently heat components that cannot be shielded or otherwise protected. The microwave absorber design is based on an array of pyramid-shaped ceramic tiles brazed to a water-cooled explosion-bonded heat sink and a stainless steel plate to produce one tile module. Computational fluid dynamics and structural analyses were performed to optimize and validate the design. Multiple test coupons were produced to validate the process for brazing the two different tile materials to the Glidcop AL-15 baseplate. The articles were tested to evaluate the reliability and thermal performance through exposure to an electron beam with a heat flux of up to 1.5 MW/m2. Nondestructive testing was performed before and after testing to identify voids or separations that may have been introduced by the high heat flux. This paper discusses the details of high heat flux microwave absorber design, manufacturing details and associated challenges, and test results, demonstrating the effectiveness of the proposed design.","PeriodicalId":12626,"journal":{"name":"Fusion Science and Technology","volume":"79 1","pages":"1124 - 1148"},"PeriodicalIF":0.9000,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material Plasma Exposure eXperiment High Heat Flux Microwave Absorber Design, Manufacture, and Articles Test\",\"authors\":\"A. Hussain, V. Rao, N. Branch, T. Gray, A. Kubik, A. Aaron, K. Logan, S. Stewart, A. Lumsdaine, G. S. Showers, R. L. Romesberg, D. Wolfe\",\"doi\":\"10.1080/15361055.2023.2221153\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Material Plasma Exposure eXperiment (MPEX) at Oak Ridge National Laboratory is in the final design phase. MPEX will be capable of exposing neutron-irradiated materials to plasmas for the study of plasma-material interaction. This facility will provide information about the complex effects of plasmas on materials and contribute to examining new materials that can withstand high heat fluxes and high ion fluences for future fusion devices. MPEX plasma is heated by 70-GHz or 105-GHz electron Bernstein wave/electron cyclotron heating (ECH), and the high-frequency microwaves are prone to scattering microwave power, which can have detrimental effects, especially on diagnostic components. A large portion of the injected ECH power is expected to be absorbed by plasma, but the remainder requires that microwave absorbers be placed immediately upstream and downstream of the ECH launcher to minimize stray microwaves leaving the ECH region. These microwaves can inadvertently heat components that cannot be shielded or otherwise protected. The microwave absorber design is based on an array of pyramid-shaped ceramic tiles brazed to a water-cooled explosion-bonded heat sink and a stainless steel plate to produce one tile module. Computational fluid dynamics and structural analyses were performed to optimize and validate the design. Multiple test coupons were produced to validate the process for brazing the two different tile materials to the Glidcop AL-15 baseplate. The articles were tested to evaluate the reliability and thermal performance through exposure to an electron beam with a heat flux of up to 1.5 MW/m2. Nondestructive testing was performed before and after testing to identify voids or separations that may have been introduced by the high heat flux. This paper discusses the details of high heat flux microwave absorber design, manufacturing details and associated challenges, and test results, demonstrating the effectiveness of the proposed design.\",\"PeriodicalId\":12626,\"journal\":{\"name\":\"Fusion Science and Technology\",\"volume\":\"79 1\",\"pages\":\"1124 - 1148\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2023-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fusion Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15361055.2023.2221153\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NUCLEAR SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15361055.2023.2221153","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

摘要橡树岭国家实验室的材料等离子体暴露实验(MPEX)正处于最终设计阶段。MPEX将能够将中子辐照的材料暴露在等离子体中,用于研究等离子体与材料的相互作用。该设施将提供有关等离子体对材料的复杂影响的信息,并有助于为未来的聚变装置研究能够承受高热通量和高离子通量的新材料。MPEX等离子体由70GHz或105GHz电子伯恩斯坦波/电子回旋加热(ECH)加热,高频微波容易散射微波功率,这可能会产生有害影响,尤其是对诊断部件。注入的ECH功率的很大一部分预计会被等离子体吸收,但其余部分需要将微波吸收器直接放置在ECH发射器的上游和下游,以最大限度地减少离开ECH区域的杂散微波。这些微波可能会无意中加热无法屏蔽或以其他方式保护的部件。微波吸收器的设计基于一系列金字塔形瓷砖,这些瓷砖钎焊到水冷爆炸粘合散热器和不锈钢板上,以生产一个瓷砖模块。进行了计算流体动力学和结构分析,以优化和验证设计。制作了多个试样,以验证将两种不同的瓷砖材料钎焊到Glidcop AL-15基板的工艺。通过暴露于热通量高达1.5MW/m2的电子束,对这些物品进行测试以评估可靠性和热性能。在测试前后进行无损检测,以确定可能由高热通量引入的空隙或分离。本文讨论了高热通量微波吸收器的设计细节、制造细节和相关挑战,以及测试结果,证明了所提出设计的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Material Plasma Exposure eXperiment High Heat Flux Microwave Absorber Design, Manufacture, and Articles Test
Abstract The Material Plasma Exposure eXperiment (MPEX) at Oak Ridge National Laboratory is in the final design phase. MPEX will be capable of exposing neutron-irradiated materials to plasmas for the study of plasma-material interaction. This facility will provide information about the complex effects of plasmas on materials and contribute to examining new materials that can withstand high heat fluxes and high ion fluences for future fusion devices. MPEX plasma is heated by 70-GHz or 105-GHz electron Bernstein wave/electron cyclotron heating (ECH), and the high-frequency microwaves are prone to scattering microwave power, which can have detrimental effects, especially on diagnostic components. A large portion of the injected ECH power is expected to be absorbed by plasma, but the remainder requires that microwave absorbers be placed immediately upstream and downstream of the ECH launcher to minimize stray microwaves leaving the ECH region. These microwaves can inadvertently heat components that cannot be shielded or otherwise protected. The microwave absorber design is based on an array of pyramid-shaped ceramic tiles brazed to a water-cooled explosion-bonded heat sink and a stainless steel plate to produce one tile module. Computational fluid dynamics and structural analyses were performed to optimize and validate the design. Multiple test coupons were produced to validate the process for brazing the two different tile materials to the Glidcop AL-15 baseplate. The articles were tested to evaluate the reliability and thermal performance through exposure to an electron beam with a heat flux of up to 1.5 MW/m2. Nondestructive testing was performed before and after testing to identify voids or separations that may have been introduced by the high heat flux. This paper discusses the details of high heat flux microwave absorber design, manufacturing details and associated challenges, and test results, demonstrating the effectiveness of the proposed design.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fusion Science and Technology
Fusion Science and Technology 工程技术-核科学技术
CiteScore
2.00
自引率
11.10%
发文量
60
审稿时长
3 months
期刊介绍: Fusion Science and Technology, a research journal of the American Nuclear Society, publishes original research and review papers on fusion plasma physics and plasma engineering, fusion nuclear technology and materials science, fusion plasma enabling science technology, fusion applications, and fusion design and systems studies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信