关于图的非回溯谱半径

IF 0.7 4区 数学 Q2 Mathematics
Hongying Lin, B. Zhou
{"title":"关于图的非回溯谱半径","authors":"Hongying Lin, B. Zhou","doi":"10.13001/ela.2022.6507","DOIUrl":null,"url":null,"abstract":"Given a graph $G$ with $m\\ge 1$ edges, the non-backtracking spectral radius of $G$ is the spectral radius of its non-backtracking matrix $B(G)$ defined as the $2m \\times 2m$ matrix where each edge $uv$ is represented by two rows and two columns, one per orientation: $(u, v)$ and $(v, u)$, and the entry of $B(G)$ in row $(u, v)$ and column $(x,y)$ is given by $\\delta_{vx}(1-\\delta_{uy})$, with $\\delta_{ij}$ being the Kronecker delta. A tight upper bound is given for the non-backtracking spectral radius in terms of the spectral radius of the adjacency matrix and minimum degree, and those connected graphs that maximize the non-backtracking spectral radius are determined if the connectivity (edge connectivity, bipartiteness, respectively) is given.","PeriodicalId":50540,"journal":{"name":"Electronic Journal of Linear Algebra","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the non-backtracking spectral radius of graphs\",\"authors\":\"Hongying Lin, B. Zhou\",\"doi\":\"10.13001/ela.2022.6507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a graph $G$ with $m\\\\ge 1$ edges, the non-backtracking spectral radius of $G$ is the spectral radius of its non-backtracking matrix $B(G)$ defined as the $2m \\\\times 2m$ matrix where each edge $uv$ is represented by two rows and two columns, one per orientation: $(u, v)$ and $(v, u)$, and the entry of $B(G)$ in row $(u, v)$ and column $(x,y)$ is given by $\\\\delta_{vx}(1-\\\\delta_{uy})$, with $\\\\delta_{ij}$ being the Kronecker delta. A tight upper bound is given for the non-backtracking spectral radius in terms of the spectral radius of the adjacency matrix and minimum degree, and those connected graphs that maximize the non-backtracking spectral radius are determined if the connectivity (edge connectivity, bipartiteness, respectively) is given.\",\"PeriodicalId\":50540,\"journal\":{\"name\":\"Electronic Journal of Linear Algebra\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Linear Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.13001/ela.2022.6507\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Linear Algebra","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.13001/ela.2022.6507","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

给定具有$m\ge1$边的图$G$,$G$的非回溯谱半径是其非回溯矩阵$B(G)$的谱半径,定义为$2m\x2m$矩阵,其中每条边$uv$由两行两列表示,每个方向一列:$(u,v)$和$(v,u)$,并且$B(G)$在第$(u、v)$行和第$(x、y)列中的条目由$\delta_{vx}(1-\delta_{uy})$给出,$\delta_{ij}$是Kronecker delta。根据邻接矩阵的谱半径和最小度,给出了非回溯谱半径的紧上界,并且如果给出连通性(分别为边连通性和二分性),则确定了最大化非回溯谱径向的连通图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the non-backtracking spectral radius of graphs
Given a graph $G$ with $m\ge 1$ edges, the non-backtracking spectral radius of $G$ is the spectral radius of its non-backtracking matrix $B(G)$ defined as the $2m \times 2m$ matrix where each edge $uv$ is represented by two rows and two columns, one per orientation: $(u, v)$ and $(v, u)$, and the entry of $B(G)$ in row $(u, v)$ and column $(x,y)$ is given by $\delta_{vx}(1-\delta_{uy})$, with $\delta_{ij}$ being the Kronecker delta. A tight upper bound is given for the non-backtracking spectral radius in terms of the spectral radius of the adjacency matrix and minimum degree, and those connected graphs that maximize the non-backtracking spectral radius are determined if the connectivity (edge connectivity, bipartiteness, respectively) is given.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
14.30%
发文量
45
审稿时长
6-12 weeks
期刊介绍: The journal is essentially unlimited by size. Therefore, we have no restrictions on length of articles. Articles are submitted electronically. Refereeing of articles is conventional and of high standards. Posting of articles is immediate following acceptance, processing and final production approval.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信