关于勒让德多项式模p^2的同余

Q3 Mathematics
Aeran Kim
{"title":"关于勒让德多项式模p^2的同余","authors":"Aeran Kim","doi":"10.46298/cm.10767","DOIUrl":null,"url":null,"abstract":"In this article, we extend Z. H. Sun's congruences concerning Legendre polynomials P p−1 2 (x) to P p+1 2 (x) for odd prime p, which enables us to deduce some congruences resembling p+1 2 ∑ k=0 4pk + 4k 2 − 1 16 k (2k − 1) 2 (2k k)2 (mod p 2).\n 이 논문에서 우리는 Z. H. Sun의 르장드르 다항식의 합동식 P p−1 2 (x) 에서 P p+1 2 (x) (단, p는 소수) 까지를 이용해서 이 합동식과 비슷한 합동식 p+1 2 ∑ k=0 4pk + 4k 2 − 1 16 k (2k − 1) 2 (2k k)2 (mod p 2) 을 유도한다.","PeriodicalId":37836,"journal":{"name":"Communications in Mathematics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS MODULO p^2\",\"authors\":\"Aeran Kim\",\"doi\":\"10.46298/cm.10767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we extend Z. H. Sun's congruences concerning Legendre polynomials P p−1 2 (x) to P p+1 2 (x) for odd prime p, which enables us to deduce some congruences resembling p+1 2 ∑ k=0 4pk + 4k 2 − 1 16 k (2k − 1) 2 (2k k)2 (mod p 2).\\n 이 논문에서 우리는 Z. H. Sun의 르장드르 다항식의 합동식 P p−1 2 (x) 에서 P p+1 2 (x) (단, p는 소수) 까지를 이용해서 이 합동식과 비슷한 합동식 p+1 2 ∑ k=0 4pk + 4k 2 − 1 16 k (2k − 1) 2 (2k k)2 (mod p 2) 을 유도한다.\",\"PeriodicalId\":37836,\"journal\":{\"name\":\"Communications in Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46298/cm.10767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/cm.10767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

In this article, we extend Z. H. Sun's congruences concerning Legendre polynomials P P - 1 2 (x) to P P +1 2 (x) for odd prime P;which enables us to deduce some congruences resembling p + 1 2∑k = 0 4pk 16 k (2k + 4k 2 - 1, - 1) 2 (2k k) 2 (mod p 2)。这篇论文中,我们z·h·sun的章吱扭다항식的联合式p 2 (x)在p - 1, p = p + 1 2 (x)段,p是质数)到利用类似联合式的联合式p + 1 2∑k = 0 4pk 16 k (2k + 4k 2 - 1, - 1) 2 (2k k) 2 (mod p 2)诱导的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS MODULO p^2
In this article, we extend Z. H. Sun's congruences concerning Legendre polynomials P p−1 2 (x) to P p+1 2 (x) for odd prime p, which enables us to deduce some congruences resembling p+1 2 ∑ k=0 4pk + 4k 2 − 1 16 k (2k − 1) 2 (2k k)2 (mod p 2). 이 논문에서 우리는 Z. H. Sun의 르장드르 다항식의 합동식 P p−1 2 (x) 에서 P p+1 2 (x) (단, p는 소수) 까지를 이용해서 이 합동식과 비슷한 합동식 p+1 2 ∑ k=0 4pk + 4k 2 − 1 16 k (2k − 1) 2 (2k k)2 (mod p 2) 을 유도한다.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Mathematics
Communications in Mathematics Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
26
审稿时长
45 weeks
期刊介绍: Communications in Mathematics publishes research and survey papers in all areas of pure and applied mathematics. To be acceptable for publication, the paper must be significant, original and correct. High quality review papers of interest to a wide range of scientists in mathematics and its applications are equally welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信