由参数的$\mathbf{Q_2^*}$-表示生成的指数型分形函数

Q3 Mathematics
M. Pratsovytyi, Y. Goncharenko, I. Lysenko, S. Ratushniak
{"title":"由参数的$\\mathbf{Q_2^*}$-表示生成的指数型分形函数","authors":"M. Pratsovytyi, Y. Goncharenko, I. Lysenko, S. Ratushniak","doi":"10.30970/ms.56.2.133-143","DOIUrl":null,"url":null,"abstract":"We consider function $f$ which is depended on the parameters $0<a\\in R$, $q_{0n}\\in (0;1)$, $n\\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\\Delta^{Q_2^*}_{\\alpha_1\\alpha_2...\\alpha_n...})=a^{\\varphi(x)}$, where $\\alpha_n\\in \\{0,1\\}$, $\\varphi(x=\\Delta^{Q_2^*}_{\\alpha_1\\alpha_2...\\alpha_n...})=\\alpha_1v_1+...+\\alpha_nv_n+...$, $q_{1n}=1-q_{0n}$, $\\Delta^{Q_2^*}_{\\alpha_1...\\alpha_n...}=\\alpha_1q_{1-\\alpha_1,1}+\\sum\\limits_{n=2}^{\\infty}\\big(\\alpha_nq_{1-\\alpha_n,n}\\prod\\limits_{i=1}^{n-1}q_{\\alpha_i,i}\\big)$.In the paper we study structural, variational, integral, differential and fractal properties of the function $f$.","PeriodicalId":37555,"journal":{"name":"Matematychni Studii","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fractal functions of exponential type that is generated by the $\\\\mathbf{Q_2^*}$-representation of argument\",\"authors\":\"M. Pratsovytyi, Y. Goncharenko, I. Lysenko, S. Ratushniak\",\"doi\":\"10.30970/ms.56.2.133-143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider function $f$ which is depended on the parameters $0<a\\\\in R$, $q_{0n}\\\\in (0;1)$, $n\\\\in N$ and convergent positive series $v_1+v_2+...+v_n+...$, defined by equality $f(x=\\\\Delta^{Q_2^*}_{\\\\alpha_1\\\\alpha_2...\\\\alpha_n...})=a^{\\\\varphi(x)}$, where $\\\\alpha_n\\\\in \\\\{0,1\\\\}$, $\\\\varphi(x=\\\\Delta^{Q_2^*}_{\\\\alpha_1\\\\alpha_2...\\\\alpha_n...})=\\\\alpha_1v_1+...+\\\\alpha_nv_n+...$, $q_{1n}=1-q_{0n}$, $\\\\Delta^{Q_2^*}_{\\\\alpha_1...\\\\alpha_n...}=\\\\alpha_1q_{1-\\\\alpha_1,1}+\\\\sum\\\\limits_{n=2}^{\\\\infty}\\\\big(\\\\alpha_nq_{1-\\\\alpha_n,n}\\\\prod\\\\limits_{i=1}^{n-1}q_{\\\\alpha_i,i}\\\\big)$.In the paper we study structural, variational, integral, differential and fractal properties of the function $f$.\",\"PeriodicalId\":37555,\"journal\":{\"name\":\"Matematychni Studii\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Matematychni Studii\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.30970/ms.56.2.133-143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Matematychni Studii","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30970/ms.56.2.133-143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑函数$f$,它依赖于R$中的参数$0本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文 本刊更多论文
Fractal functions of exponential type that is generated by the $\mathbf{Q_2^*}$-representation of argument
We consider function $f$ which is depended on the parameters $0
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Matematychni Studii
Matematychni Studii Mathematics-Mathematics (all)
CiteScore
1.00
自引率
0.00%
发文量
38
期刊介绍: Journal is devoted to research in all fields of mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信