Sarosh Ahmad, Bilal Manzoor, Muhammad Muzamil Shair, Shahid Khan, A. Akram, A. Ghaffar, Ahmed Jamal Abdullah Al-Gburi, E. Ali, F. Arpanaei, Mohammad Alibakhshikenari
{"title":"用于宽带生物医学遥测应用的新型微型化植入式天线","authors":"Sarosh Ahmad, Bilal Manzoor, Muhammad Muzamil Shair, Shahid Khan, A. Akram, A. Ghaffar, Ahmed Jamal Abdullah Al-Gburi, E. Ali, F. Arpanaei, Mohammad Alibakhshikenari","doi":"10.1515/freq-2022-0043","DOIUrl":null,"url":null,"abstract":"Abstract Medical telemetry applications rely heavily on biomedical implanted antennas. These biomedical implanted devices can enhance and monitor patients’ daily life circumstances. A low-profile, downsized size implanted antenna operating at 915 MHz in the industrial, scientific, and medical (ISM) band is suggested in this research. The antenna is a simple slotted patch supplied by a 50-impedance coaxial probe. The radiator is made up of two slotted parasitic patches with one square-shaped outer radiator are manufactured on a Roger Droid RT5880 substrate with a standard height of 0.254 mm (εr = 2.2, tanδ = 0.0009). The entire dimension of the given antenna is 11 × 11 × 0.2514 mm with an electrical size of 0.049λg × 0.049λg × 0.0011λg. The antenna spans a bandwidth of 0.82–1.05 GHz when working inside muscle tissues (25.13 percent). The antenna’s calculations and experimental findings are quite similar. The computed specific absorption rate (SAR) values inside muscle of above 1 g mass tissue are 7.25 W/kg, according to the data. The stated SAR values are lower than the limit set by the Federal Communications Commission (FCC). As a result, the proposed small antenna is a strong contender for biological implantable applications.","PeriodicalId":55143,"journal":{"name":"Frequenz","volume":"77 1","pages":"293 - 301"},"PeriodicalIF":0.8000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Novel implantable antenna with miniaturized footprint size for wideband biomedical telemetry applications\",\"authors\":\"Sarosh Ahmad, Bilal Manzoor, Muhammad Muzamil Shair, Shahid Khan, A. Akram, A. Ghaffar, Ahmed Jamal Abdullah Al-Gburi, E. Ali, F. Arpanaei, Mohammad Alibakhshikenari\",\"doi\":\"10.1515/freq-2022-0043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Medical telemetry applications rely heavily on biomedical implanted antennas. These biomedical implanted devices can enhance and monitor patients’ daily life circumstances. A low-profile, downsized size implanted antenna operating at 915 MHz in the industrial, scientific, and medical (ISM) band is suggested in this research. The antenna is a simple slotted patch supplied by a 50-impedance coaxial probe. The radiator is made up of two slotted parasitic patches with one square-shaped outer radiator are manufactured on a Roger Droid RT5880 substrate with a standard height of 0.254 mm (εr = 2.2, tanδ = 0.0009). The entire dimension of the given antenna is 11 × 11 × 0.2514 mm with an electrical size of 0.049λg × 0.049λg × 0.0011λg. The antenna spans a bandwidth of 0.82–1.05 GHz when working inside muscle tissues (25.13 percent). The antenna’s calculations and experimental findings are quite similar. The computed specific absorption rate (SAR) values inside muscle of above 1 g mass tissue are 7.25 W/kg, according to the data. The stated SAR values are lower than the limit set by the Federal Communications Commission (FCC). As a result, the proposed small antenna is a strong contender for biological implantable applications.\",\"PeriodicalId\":55143,\"journal\":{\"name\":\"Frequenz\",\"volume\":\"77 1\",\"pages\":\"293 - 301\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frequenz\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1515/freq-2022-0043\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frequenz","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1515/freq-2022-0043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Novel implantable antenna with miniaturized footprint size for wideband biomedical telemetry applications
Abstract Medical telemetry applications rely heavily on biomedical implanted antennas. These biomedical implanted devices can enhance and monitor patients’ daily life circumstances. A low-profile, downsized size implanted antenna operating at 915 MHz in the industrial, scientific, and medical (ISM) band is suggested in this research. The antenna is a simple slotted patch supplied by a 50-impedance coaxial probe. The radiator is made up of two slotted parasitic patches with one square-shaped outer radiator are manufactured on a Roger Droid RT5880 substrate with a standard height of 0.254 mm (εr = 2.2, tanδ = 0.0009). The entire dimension of the given antenna is 11 × 11 × 0.2514 mm with an electrical size of 0.049λg × 0.049λg × 0.0011λg. The antenna spans a bandwidth of 0.82–1.05 GHz when working inside muscle tissues (25.13 percent). The antenna’s calculations and experimental findings are quite similar. The computed specific absorption rate (SAR) values inside muscle of above 1 g mass tissue are 7.25 W/kg, according to the data. The stated SAR values are lower than the limit set by the Federal Communications Commission (FCC). As a result, the proposed small antenna is a strong contender for biological implantable applications.
期刊介绍:
Frequenz is one of the leading scientific and technological journals covering all aspects of RF-, Microwave-, and THz-Engineering. It is a peer-reviewed, bi-monthly published journal.
Frequenz was first published in 1947 with a circulation of 7000 copies, focusing on telecommunications. Today, the major objective of Frequenz is to highlight current research activities and development efforts in RF-, Microwave-, and THz-Engineering throughout a wide frequency spectrum ranging from radio via microwave up to THz frequencies.
RF-, Microwave-, and THz-Engineering is a very active area of Research & Development as well as of Applications in a wide variety of fields. It has been the key to enabling technologies responsible for phenomenal growth of satellite broadcasting, wireless communications, satellite and terrestrial mobile communications and navigation, high-speed THz communication systems. It will open up new technologies in communications, radar, remote sensing and imaging, in identification and localization as well as in sensors, e.g. for wireless industrial process and environmental monitoring as well as for biomedical sensing.