实k图C *代数的k理论

IF 0.5 Q3 MATHEMATICS
Jeffrey L. Boersema, E. Gillaspy
{"title":"实k图C *代数的k理论","authors":"Jeffrey L. Boersema, E. Gillaspy","doi":"10.2140/akt.2022.7.395","DOIUrl":null,"url":null,"abstract":". We initiate the study of real C ∗ -algebras associated to higher-rank graphs Λ, with a focus on their K -theory. Following Kasparov and Evans, we identify a spectral sequence which computes the CR K -theory of C ∗ R (Λ , γ ) for any involution γ on Λ, and show that the E 2 page of this spectral sequence can be straightforwardly computed from the combinatorial data of the k -graph Λ and the involution γ . We provide a complete description of K CR ( C ∗ R (Λ , γ )) for several examples of higher-rank graphs Λ with involution.","PeriodicalId":42182,"journal":{"name":"Annals of K-Theory","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"K-theory for real k-graph C∗-algebras\",\"authors\":\"Jeffrey L. Boersema, E. Gillaspy\",\"doi\":\"10.2140/akt.2022.7.395\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". We initiate the study of real C ∗ -algebras associated to higher-rank graphs Λ, with a focus on their K -theory. Following Kasparov and Evans, we identify a spectral sequence which computes the CR K -theory of C ∗ R (Λ , γ ) for any involution γ on Λ, and show that the E 2 page of this spectral sequence can be straightforwardly computed from the combinatorial data of the k -graph Λ and the involution γ . We provide a complete description of K CR ( C ∗ R (Λ , γ )) for several examples of higher-rank graphs Λ with involution.\",\"PeriodicalId\":42182,\"journal\":{\"name\":\"Annals of K-Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of K-Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/akt.2022.7.395\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of K-Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/akt.2022.7.395","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

. 我们开始研究与高阶图Λ相关的实C * -代数,重点是它们的K -理论。在Kasparov和Evans的基础上,我们确定了一个谱序列,该谱序列计算了Λ上任意对合γ的C * R (Λ, γ)的CR K理论,并证明了该谱序列的e2页可以直接从K图Λ和对合γ的组合数据中计算出来。对于若干具有对合的高阶图Λ,我们给出了K CR (C∗R (Λ, γ))的完整描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
K-theory for real k-graph C∗-algebras
. We initiate the study of real C ∗ -algebras associated to higher-rank graphs Λ, with a focus on their K -theory. Following Kasparov and Evans, we identify a spectral sequence which computes the CR K -theory of C ∗ R (Λ , γ ) for any involution γ on Λ, and show that the E 2 page of this spectral sequence can be straightforwardly computed from the combinatorial data of the k -graph Λ and the involution γ . We provide a complete description of K CR ( C ∗ R (Λ , γ )) for several examples of higher-rank graphs Λ with involution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of K-Theory
Annals of K-Theory MATHEMATICS-
CiteScore
1.10
自引率
0.00%
发文量
12
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信