V. Unnikrishnan, N. Yadava, N. Virani, J. Ghosh, N. Sreenivas, L. Aravindakshan Pillai, K. Bodi
{"title":"等离子体风洞中非平衡流动的计算与实验研究","authors":"V. Unnikrishnan, N. Yadava, N. Virani, J. Ghosh, N. Sreenivas, L. Aravindakshan Pillai, K. Bodi","doi":"10.2514/1.t6357","DOIUrl":null,"url":null,"abstract":"The present work examines the thermochemical nonequilibrium flow in the freestream and shock layer of the Plasma Wind Tunnel Facility using experiments and computations. Computational studies were performed using the open-source solver [Formula: see text], which was validated using the NASA Interaction Heating Facility case. Two chemical reaction models were used to compute the nonequilibrium state of air, composed of six species ([Formula: see text], [Formula: see text], NO, N, O, Ar). Optical emission spectroscopy was employed to experimentally capture the [Formula: see text] first positive system emission from the freestream and molecular CN vibration bands emissions in the shock region. The Boltzmann plot method was employed to estimate the vibrational temperatures from the measured spectra. The measured vibrational temperatures in the freestream for two different transitions of [Formula: see text] agree with one another, which shows that the vibrational modes obey the Boltzmann distribution for the conditions considered in this study. The vibrational temperatures computed using [Formula: see text] in the nozzle freestream and the shock layer for the Plasma Wind Tunnel conditions agree with the values obtained from optical emission spectroscopy.","PeriodicalId":17482,"journal":{"name":"Journal of Thermophysics and Heat Transfer","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Computational and Experimental Study of Nonequilibrium Flow in Plasma Wind Tunnel\",\"authors\":\"V. Unnikrishnan, N. Yadava, N. Virani, J. Ghosh, N. Sreenivas, L. Aravindakshan Pillai, K. Bodi\",\"doi\":\"10.2514/1.t6357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present work examines the thermochemical nonequilibrium flow in the freestream and shock layer of the Plasma Wind Tunnel Facility using experiments and computations. Computational studies were performed using the open-source solver [Formula: see text], which was validated using the NASA Interaction Heating Facility case. Two chemical reaction models were used to compute the nonequilibrium state of air, composed of six species ([Formula: see text], [Formula: see text], NO, N, O, Ar). Optical emission spectroscopy was employed to experimentally capture the [Formula: see text] first positive system emission from the freestream and molecular CN vibration bands emissions in the shock region. The Boltzmann plot method was employed to estimate the vibrational temperatures from the measured spectra. The measured vibrational temperatures in the freestream for two different transitions of [Formula: see text] agree with one another, which shows that the vibrational modes obey the Boltzmann distribution for the conditions considered in this study. The vibrational temperatures computed using [Formula: see text] in the nozzle freestream and the shock layer for the Plasma Wind Tunnel conditions agree with the values obtained from optical emission spectroscopy.\",\"PeriodicalId\":17482,\"journal\":{\"name\":\"Journal of Thermophysics and Heat Transfer\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Thermophysics and Heat Transfer\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.2514/1.t6357\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermophysics and Heat Transfer","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.2514/1.t6357","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Computational and Experimental Study of Nonequilibrium Flow in Plasma Wind Tunnel
The present work examines the thermochemical nonequilibrium flow in the freestream and shock layer of the Plasma Wind Tunnel Facility using experiments and computations. Computational studies were performed using the open-source solver [Formula: see text], which was validated using the NASA Interaction Heating Facility case. Two chemical reaction models were used to compute the nonequilibrium state of air, composed of six species ([Formula: see text], [Formula: see text], NO, N, O, Ar). Optical emission spectroscopy was employed to experimentally capture the [Formula: see text] first positive system emission from the freestream and molecular CN vibration bands emissions in the shock region. The Boltzmann plot method was employed to estimate the vibrational temperatures from the measured spectra. The measured vibrational temperatures in the freestream for two different transitions of [Formula: see text] agree with one another, which shows that the vibrational modes obey the Boltzmann distribution for the conditions considered in this study. The vibrational temperatures computed using [Formula: see text] in the nozzle freestream and the shock layer for the Plasma Wind Tunnel conditions agree with the values obtained from optical emission spectroscopy.
期刊介绍:
This Journal is devoted to the advancement of the science and technology of thermophysics and heat transfer through the dissemination of original research papers disclosing new technical knowledge and exploratory developments and applications based on new knowledge. The Journal publishes qualified papers that deal with the properties and mechanisms involved in thermal energy transfer and storage in gases, liquids, and solids or combinations thereof. These studies include aerothermodynamics; conductive, convective, radiative, and multiphase modes of heat transfer; micro- and nano-scale heat transfer; nonintrusive diagnostics; numerical and experimental techniques; plasma excitation and flow interactions; thermal systems; and thermophysical properties. Papers that review recent research developments in any of the prior topics are also solicited.