齐型空间上加权Morrey空间上的交换子

Pub Date : 2020-01-01 DOI:10.1515/agms-2020-0116
Ruming Gong, Ji Li, Elodie Pozzi, Manasa N. Vempati
{"title":"齐型空间上加权Morrey空间上的交换子","authors":"Ruming Gong, Ji Li, Elodie Pozzi, Manasa N. Vempati","doi":"10.1515/agms-2020-0116","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the boundedness and compactness of the commutator of Calderón– Zygmund operators T on spaces of homogeneous type (X, d, µ) in the sense of Coifman and Weiss. More precisely, we show that the commutator [b, T] is bounded on the weighted Morrey space Lωp,k(X) L_\\omega ^{p,k}\\left( X \\right) with κ ∈ (0, 1) and ω ∈ Ap(X), 1 < p < ∞, if and only if b is in the BMO space. We also prove that the commutator [b, T] is compact on the same weighted Morrey space if and only if b belongs to the VMO space. We note that there is no extra assumptions on the quasimetric d and the doubling measure µ.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/agms-2020-0116","citationCount":"9","resultStr":"{\"title\":\"Commutators on Weighted Morrey Spaces on Spaces of Homogeneous Type\",\"authors\":\"Ruming Gong, Ji Li, Elodie Pozzi, Manasa N. Vempati\",\"doi\":\"10.1515/agms-2020-0116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the boundedness and compactness of the commutator of Calderón– Zygmund operators T on spaces of homogeneous type (X, d, µ) in the sense of Coifman and Weiss. More precisely, we show that the commutator [b, T] is bounded on the weighted Morrey space Lωp,k(X) L_\\\\omega ^{p,k}\\\\left( X \\\\right) with κ ∈ (0, 1) and ω ∈ Ap(X), 1 < p < ∞, if and only if b is in the BMO space. We also prove that the commutator [b, T] is compact on the same weighted Morrey space if and only if b belongs to the VMO space. We note that there is no extra assumptions on the quasimetric d and the doubling measure µ.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/agms-2020-0116\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2020-0116\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2020-0116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

摘要本文在Coifman和Weiss意义上研究齐次型(X,d,µ)空间上Calderón–Zygmund算子T的交换子的有界性和紧性。更确切地说,我们证明了交换子[b,T]在加权Morrey空间Lωp,k(X)L_\omega^{p,k}\left(X\right)上有界,其中κ∈(0,1)和ω∈Ap(X),1本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Commutators on Weighted Morrey Spaces on Spaces of Homogeneous Type
Abstract In this paper, we study the boundedness and compactness of the commutator of Calderón– Zygmund operators T on spaces of homogeneous type (X, d, µ) in the sense of Coifman and Weiss. More precisely, we show that the commutator [b, T] is bounded on the weighted Morrey space Lωp,k(X) L_\omega ^{p,k}\left( X \right) with κ ∈ (0, 1) and ω ∈ Ap(X), 1 < p < ∞, if and only if b is in the BMO space. We also prove that the commutator [b, T] is compact on the same weighted Morrey space if and only if b belongs to the VMO space. We note that there is no extra assumptions on the quasimetric d and the doubling measure µ.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
请完成安全验证×
微信好友 朋友圈 QQ好友 复制链接
取消
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信