Gelfand-Cetlin体系中带体朗道-金兹堡势的临界点分析

Pub Date : 2019-11-11 DOI:10.1215/21562261-2021-0002
Yunhyung Cho, Yoosik Kim, Y. Oh
{"title":"Gelfand-Cetlin体系中带体朗道-金兹堡势的临界点分析","authors":"Yunhyung Cho, Yoosik Kim, Y. Oh","doi":"10.1215/21562261-2021-0002","DOIUrl":null,"url":null,"abstract":"Using the bulk-deformation of Floer cohomology by Schubert cycles and non-Archimedean analysis of Fukaya--Oh--Ohta--Ono's bulk-deformed potential function, we prove that every complete flag manifold $\\mathrm{Fl}(n)$ ($n \\geq 3$) with a monotone Kirillov--Kostant--Souriau symplectic form carries a continuum of non-displaceable Lagrangian tori which degenerates to a non-torus fiber in the Hausdorff limit. In particular, the Lagrangian $S^3$-fiber in $\\mathrm{Fl}(3)$ is non-displaceable, answering the question of which was raised by Nohara--Ueda who computed its Floer cohomology to be vanishing.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A critical point analysis of Landau–Ginzburg potentials with bulk in Gelfand–Cetlin systems\",\"authors\":\"Yunhyung Cho, Yoosik Kim, Y. Oh\",\"doi\":\"10.1215/21562261-2021-0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using the bulk-deformation of Floer cohomology by Schubert cycles and non-Archimedean analysis of Fukaya--Oh--Ohta--Ono's bulk-deformed potential function, we prove that every complete flag manifold $\\\\mathrm{Fl}(n)$ ($n \\\\geq 3$) with a monotone Kirillov--Kostant--Souriau symplectic form carries a continuum of non-displaceable Lagrangian tori which degenerates to a non-torus fiber in the Hausdorff limit. In particular, the Lagrangian $S^3$-fiber in $\\\\mathrm{Fl}(3)$ is non-displaceable, answering the question of which was raised by Nohara--Ueda who computed its Floer cohomology to be vanishing.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2021-0002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2021-0002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

利用Schubert循环对Floer上同调的体积变形和对Fukaya—Oh—Ohta—Ono的体积变形势函数的非阿基米德分析,证明了每一个具有单调Kirillov—Kostant—Souriau型的完备标志流形$\mathrm{Fl}(n)$ ($n \geq 3$)携带一个不可置换的lagrange环面连续体,该连续体在Hausdorff极限下退化为非环面纤维。特别是,$\mathrm{Fl}(3)$中的拉格朗日$S^3$ -纤维是不可置换的,回答了Nohara- Ueda提出的问题,他计算出它的花上同调正在消失。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
A critical point analysis of Landau–Ginzburg potentials with bulk in Gelfand–Cetlin systems
Using the bulk-deformation of Floer cohomology by Schubert cycles and non-Archimedean analysis of Fukaya--Oh--Ohta--Ono's bulk-deformed potential function, we prove that every complete flag manifold $\mathrm{Fl}(n)$ ($n \geq 3$) with a monotone Kirillov--Kostant--Souriau symplectic form carries a continuum of non-displaceable Lagrangian tori which degenerates to a non-torus fiber in the Hausdorff limit. In particular, the Lagrangian $S^3$-fiber in $\mathrm{Fl}(3)$ is non-displaceable, answering the question of which was raised by Nohara--Ueda who computed its Floer cohomology to be vanishing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信