关于复活系列的莫亚尔星积

IF 0.8 4区 数学 Q2 MATHEMATICS
Yong Li, D. Sauzin, Shanzhong Sun
{"title":"关于复活系列的莫亚尔星积","authors":"Yong Li, D. Sauzin, Shanzhong Sun","doi":"10.5802/aif.3565","DOIUrl":null,"url":null,"abstract":"We analyze the Moyal star product in deformation quantization from the resurgence theory perspective. By putting algebraic conditions on Borel transforms, one can define the space of ``algebro-resurgent series'' (a subspace of $1$-Gevrey formal series in $i\\hbar/2$ with coefficients in $C\\{q,p\\}$), which we show is stable under Moyal star product.","PeriodicalId":50781,"journal":{"name":"Annales De L Institut Fourier","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the Moyal Star Product of Resurgent Series\",\"authors\":\"Yong Li, D. Sauzin, Shanzhong Sun\",\"doi\":\"10.5802/aif.3565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We analyze the Moyal star product in deformation quantization from the resurgence theory perspective. By putting algebraic conditions on Borel transforms, one can define the space of ``algebro-resurgent series'' (a subspace of $1$-Gevrey formal series in $i\\\\hbar/2$ with coefficients in $C\\\\{q,p\\\\}$), which we show is stable under Moyal star product.\",\"PeriodicalId\":50781,\"journal\":{\"name\":\"Annales De L Institut Fourier\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2020-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Fourier\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.5802/aif.3565\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Fourier","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.5802/aif.3565","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

我们从复活理论的角度分析了变形量子化中的莫亚尔星积。通过在Borel变换上设置代数条件,我们可以定义“algebro复活级数”的空间($i\hbar/2$中的$1$-Gevrey形式级数的子空间,系数在$C\{q,p\}$中),我们证明它在Moyal星积下是稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Moyal Star Product of Resurgent Series
We analyze the Moyal star product in deformation quantization from the resurgence theory perspective. By putting algebraic conditions on Borel transforms, one can define the space of ``algebro-resurgent series'' (a subspace of $1$-Gevrey formal series in $i\hbar/2$ with coefficients in $C\{q,p\}$), which we show is stable under Moyal star product.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
92
审稿时长
1 months
期刊介绍: The Annales de l’Institut Fourier aim at publishing original papers of a high level in all fields of mathematics, either in English or in French. The Editorial Board encourages submission of articles containing an original and important result, or presenting a new proof of a central result in a domain of mathematics. Also, the Annales de l’Institut Fourier being a general purpose journal, highly specialized articles can only be accepted if their exposition makes them accessible to a larger audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信