利用burger材料模型和自由场-静边界条件确定Oroville土坝近断层三维地震行为

IF 1.8 4区 数学 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
M. Karalar, Murat Çavuşlu
{"title":"利用burger材料模型和自由场-静边界条件确定Oroville土坝近断层三维地震行为","authors":"M. Karalar, Murat Çavuşlu","doi":"10.1080/13873954.2022.2033274","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, the three-dimensional (3D) near-fault earthquake performance of the Oroville dam is examined considering a special material model and various seismic boundary conditions. The 3D finite-difference model of the Oroville EF dam is modeled using the finite difference method. Burger Creep (BC) material model is utilized for the foundation and dam body materials. Special interface elements are taken into account between the dam body and foundation. Fix, free field, and quiet seismic boundary conditions are considered for 3D nonlinear earthquake analyses. Total six various strong near-fault earthquakes are used in the 3D analyses. According to the non-linear earthquake analyses, principal stresses, horizontal and vertical displacements for three nodal points are assessed in detail and numerical results are compared for reflecting and non-reflecting seismic boundary conditions. It is clearly understood that seismic boundary conditions should not be utilized randomly for 3D modeling and analysis of EF dams.","PeriodicalId":49871,"journal":{"name":"Mathematical and Computer Modelling of Dynamical Systems","volume":"28 1","pages":"55 - 77"},"PeriodicalIF":1.8000,"publicationDate":"2022-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Determination of 3D near fault seismic behaviour of Oroville earth fill dam using burger material model and free field-quiet boundary conditions\",\"authors\":\"M. Karalar, Murat Çavuşlu\",\"doi\":\"10.1080/13873954.2022.2033274\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this study, the three-dimensional (3D) near-fault earthquake performance of the Oroville dam is examined considering a special material model and various seismic boundary conditions. The 3D finite-difference model of the Oroville EF dam is modeled using the finite difference method. Burger Creep (BC) material model is utilized for the foundation and dam body materials. Special interface elements are taken into account between the dam body and foundation. Fix, free field, and quiet seismic boundary conditions are considered for 3D nonlinear earthquake analyses. Total six various strong near-fault earthquakes are used in the 3D analyses. According to the non-linear earthquake analyses, principal stresses, horizontal and vertical displacements for three nodal points are assessed in detail and numerical results are compared for reflecting and non-reflecting seismic boundary conditions. It is clearly understood that seismic boundary conditions should not be utilized randomly for 3D modeling and analysis of EF dams.\",\"PeriodicalId\":49871,\"journal\":{\"name\":\"Mathematical and Computer Modelling of Dynamical Systems\",\"volume\":\"28 1\",\"pages\":\"55 - 77\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-02-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical and Computer Modelling of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1080/13873954.2022.2033274\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computer Modelling of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/13873954.2022.2033274","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 7

摘要

摘要在考虑特殊材料模型和各种地震边界条件的情况下,研究了奥罗维尔大坝的三维近断层地震性能。采用有限差分法建立了奥罗维尔EF坝的三维有限差分模型。基础和坝体材料采用Burger Creep (BC)材料模型。坝体与基础之间考虑了特殊的界面元素。三维非线性地震分析考虑了固定、自由场和安静地震边界条件。三维分析共使用了6次不同的近断层强地震。根据非线性地震分析,详细计算了三个节点的主应力、水平和垂直位移,并对反射和非反射地震边界条件下的数值结果进行了比较。明确地认识到,地震边界条件不应该随机地用于EF坝的三维建模和分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of 3D near fault seismic behaviour of Oroville earth fill dam using burger material model and free field-quiet boundary conditions
ABSTRACT In this study, the three-dimensional (3D) near-fault earthquake performance of the Oroville dam is examined considering a special material model and various seismic boundary conditions. The 3D finite-difference model of the Oroville EF dam is modeled using the finite difference method. Burger Creep (BC) material model is utilized for the foundation and dam body materials. Special interface elements are taken into account between the dam body and foundation. Fix, free field, and quiet seismic boundary conditions are considered for 3D nonlinear earthquake analyses. Total six various strong near-fault earthquakes are used in the 3D analyses. According to the non-linear earthquake analyses, principal stresses, horizontal and vertical displacements for three nodal points are assessed in detail and numerical results are compared for reflecting and non-reflecting seismic boundary conditions. It is clearly understood that seismic boundary conditions should not be utilized randomly for 3D modeling and analysis of EF dams.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.80
自引率
5.30%
发文量
7
审稿时长
>12 weeks
期刊介绍: Mathematical and Computer Modelling of Dynamical Systems (MCMDS) publishes high quality international research that presents new ideas and approaches in the derivation, simplification, and validation of models and sub-models of relevance to complex (real-world) dynamical systems. The journal brings together engineers and scientists working in different areas of application and/or theory where researchers can learn about recent developments across engineering, environmental systems, and biotechnology amongst other fields. As MCMDS covers a wide range of application areas, papers aim to be accessible to readers who are not necessarily experts in the specific area of application. MCMDS welcomes original articles on a range of topics including: -methods of modelling and simulation- automation of modelling- qualitative and modular modelling- data-based and learning-based modelling- uncertainties and the effects of modelling errors on system performance- application of modelling to complex real-world systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信