关于完全着色的一个度规性质

IF 0.5 Q4 MATHEMATICS
Anna A. Taranenko
{"title":"关于完全着色的一个度规性质","authors":"Anna A. Taranenko","doi":"10.33048/semi.2021.18.046","DOIUrl":null,"url":null,"abstract":"Given a perfect coloring of a graph, we prove that the L1 distance between two rows of the adjacency matrix of the graph is not less than the L1 distance between the corresponding rows of the parameter matrix of the coloring. With the help of an algebraic approach, we deduce corollaries of this result for perfect 2-colorings, perfect colorings in distance-l graphs and in distance-regular graphs. We also provide examples when the obtained property reject several putative parameter matrices of perfect colorings in infinite graphs.","PeriodicalId":45858,"journal":{"name":"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2021-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a metric property of perfect colorings\",\"authors\":\"Anna A. Taranenko\",\"doi\":\"10.33048/semi.2021.18.046\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a perfect coloring of a graph, we prove that the L1 distance between two rows of the adjacency matrix of the graph is not less than the L1 distance between the corresponding rows of the parameter matrix of the coloring. With the help of an algebraic approach, we deduce corollaries of this result for perfect 2-colorings, perfect colorings in distance-l graphs and in distance-regular graphs. We also provide examples when the obtained property reject several putative parameter matrices of perfect colorings in infinite graphs.\",\"PeriodicalId\":45858,\"journal\":{\"name\":\"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2021-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33048/semi.2021.18.046\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Siberian Electronic Mathematical Reports-Sibirskie Elektronnye Matematicheskie Izvestiya","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33048/semi.2021.18.046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

给定图的完全着色,我们证明了图的邻接矩阵的两行之间的L1距离不小于着色的参数矩阵的相应行之间的L1。在代数方法的帮助下,我们推导了这个结果对于完美2-色、距离-l图和距离正则图中的完美色的推论。我们还提供了当所获得的性质拒绝无限图中几个假定的完全着色的参数矩阵时的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a metric property of perfect colorings
Given a perfect coloring of a graph, we prove that the L1 distance between two rows of the adjacency matrix of the graph is not less than the L1 distance between the corresponding rows of the parameter matrix of the coloring. With the help of an algebraic approach, we deduce corollaries of this result for perfect 2-colorings, perfect colorings in distance-l graphs and in distance-regular graphs. We also provide examples when the obtained property reject several putative parameter matrices of perfect colorings in infinite graphs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.00
自引率
25.00%
发文量
15
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信