部分新引进甜瓜杂交种采后性能解释及贮藏温度优化

Q3 Agricultural and Biological Sciences
M. Alabboud, S. Kalantari, F. Soltani
{"title":"部分新引进甜瓜杂交种采后性能解释及贮藏温度优化","authors":"M. Alabboud, S. Kalantari, F. Soltani","doi":"10.36253/ahsc-10914","DOIUrl":null,"url":null,"abstract":"Temperature is a key factor in melon cold storage. Thus, optimizing storage temperature is an important goal in postharvest research. In this experiment, postharvest attributes of four inbred lines and five derivative hybrids were investigated under three storage temperatures (1, 4, and 12°C). Melon fruit were evaluated for their main characteristics directly after harvest and postharvest changes were monitored through cold storage period. Cluster analysis results showed that most of the hybrids clustered with their maternal parents illustrating the significant role of cytoplasmic inheritance for the studied traits. Similarly, principal component analysis clustered the studied types into three clusters according to their average postharvest behaviour. The best postharvest performance belonged to inodorus and cantalupensis netted melon with their intercrossing breeds. While the dudaim inbred line and its hybrid scored the highest postharvest changes. Response surface analysis showed that 1.8°C was the optimum storage temperature for inodorus and cantalupensis clusters, while 5.1°C was the best storage temperature of dudaim cluster. The results of the current study are similar to previous reports for optimum storage temperature in similar melon types.","PeriodicalId":7339,"journal":{"name":"Advances in horticultural science","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Postharvest performance interpretation and storage temperature optimization in some newly introduced melon hybrids\",\"authors\":\"M. Alabboud, S. Kalantari, F. Soltani\",\"doi\":\"10.36253/ahsc-10914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Temperature is a key factor in melon cold storage. Thus, optimizing storage temperature is an important goal in postharvest research. In this experiment, postharvest attributes of four inbred lines and five derivative hybrids were investigated under three storage temperatures (1, 4, and 12°C). Melon fruit were evaluated for their main characteristics directly after harvest and postharvest changes were monitored through cold storage period. Cluster analysis results showed that most of the hybrids clustered with their maternal parents illustrating the significant role of cytoplasmic inheritance for the studied traits. Similarly, principal component analysis clustered the studied types into three clusters according to their average postharvest behaviour. The best postharvest performance belonged to inodorus and cantalupensis netted melon with their intercrossing breeds. While the dudaim inbred line and its hybrid scored the highest postharvest changes. Response surface analysis showed that 1.8°C was the optimum storage temperature for inodorus and cantalupensis clusters, while 5.1°C was the best storage temperature of dudaim cluster. The results of the current study are similar to previous reports for optimum storage temperature in similar melon types.\",\"PeriodicalId\":7339,\"journal\":{\"name\":\"Advances in horticultural science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in horticultural science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36253/ahsc-10914\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Agricultural and Biological Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in horticultural science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36253/ahsc-10914","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0

摘要

温度是甜瓜冷藏的关键因素。因此,优化贮藏温度是采后研究的一个重要目标。在本试验中,研究了四个自交系和五个衍生杂交种在三种贮藏温度(1、4和12°C)下的采后特性。甜瓜果实在收获后直接评价其主要特性,并通过冷藏期监测采后的变化。聚类分析结果表明,大多数杂交种与其母本聚类,说明细胞质遗传对所研究性状的重要作用。同样,主成分分析根据采后的平均行为将所研究的类型聚类为三个聚类。采后表现最好的是其杂交品种inodorus和cantalupensis网纹甜瓜。而杜达姆自交系及其杂交种的采后变化最高。响应面分析表明,1.8°C是inodorus和cantalupensis集群的最佳贮藏温度,5.1°C是dudaim集群的最佳储藏温度。目前的研究结果与以前关于类似甜瓜类型的最佳贮藏温度的报道相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Postharvest performance interpretation and storage temperature optimization in some newly introduced melon hybrids
Temperature is a key factor in melon cold storage. Thus, optimizing storage temperature is an important goal in postharvest research. In this experiment, postharvest attributes of four inbred lines and five derivative hybrids were investigated under three storage temperatures (1, 4, and 12°C). Melon fruit were evaluated for their main characteristics directly after harvest and postharvest changes were monitored through cold storage period. Cluster analysis results showed that most of the hybrids clustered with their maternal parents illustrating the significant role of cytoplasmic inheritance for the studied traits. Similarly, principal component analysis clustered the studied types into three clusters according to their average postharvest behaviour. The best postharvest performance belonged to inodorus and cantalupensis netted melon with their intercrossing breeds. While the dudaim inbred line and its hybrid scored the highest postharvest changes. Response surface analysis showed that 1.8°C was the optimum storage temperature for inodorus and cantalupensis clusters, while 5.1°C was the best storage temperature of dudaim cluster. The results of the current study are similar to previous reports for optimum storage temperature in similar melon types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in horticultural science
Advances in horticultural science Agricultural and Biological Sciences-Horticulture
CiteScore
1.20
自引率
0.00%
发文量
15
审稿时长
12 weeks
期刊介绍: Advances in Horticultural Science aims to provide a forum for original investigations in horticulture, viticulture and oliviculture. The journal publishes fully refereed papers which cover applied and theoretical approaches to the most recent studies of all areas of horticulture - fruit growing, vegetable growing, viticulture, floriculture, medicinal plants, ornamental gardening, garden and landscape architecture, in temperate, subtropical and tropical regions. Papers on horticultural aspects of agronomic, breeding, biotechnology, entomology, irrigation and plant stress physiology, plant nutrition, plant protection, plant pathology, and pre and post harvest physiology, are also welcomed. The journal scope is the promotion of a sustainable increase of the quantity and quality of horticultural products and the transfer of the new knowledge in the field. Papers should report original research, should be methodologically sound and of relevance to the international scientific community. AHS publishes three types of manuscripts: Full-length - short note - review papers. Papers are published in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信