整数分解与复合性见证

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS
J. Pomykala, M. Radziejewski
{"title":"整数分解与复合性见证","authors":"J. Pomykala, M. Radziejewski","doi":"10.1515/jmc-2019-0023","DOIUrl":null,"url":null,"abstract":"Abstract We describe a reduction of the problem of factorization of integers n ≤ x in polynomial-time (log x)M+O(1) to computing Euler’s totient function, with exceptions of at most xO(1/M) composite integers that cannot be factored at all, and at most x exp −cM(loglog⁡x)3(logloglog⁡x)2 $\\begin{array}{} \\displaystyle \\left(-\\frac{c_M(\\log\\log x)^3}{(\\log\\log\\log x)^2}\\right) \\end{array}$ integers that cannot be factored completely. The problem of factoring square-free integers n is similarly reduced to that of computing a multiple D of ϕ(n), where D ≪ exp((log x)O(1)), with the exception of at most xO(1/M) integers that cannot be factored at all, in particular O(x1/M) integers of the form n = pq that cannot be factored.","PeriodicalId":43866,"journal":{"name":"Journal of Mathematical Cryptology","volume":"14 1","pages":"346 - 358"},"PeriodicalIF":0.5000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/jmc-2019-0023","citationCount":"2","resultStr":"{\"title\":\"Integer factoring and compositeness witnesses\",\"authors\":\"J. Pomykala, M. Radziejewski\",\"doi\":\"10.1515/jmc-2019-0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract We describe a reduction of the problem of factorization of integers n ≤ x in polynomial-time (log x)M+O(1) to computing Euler’s totient function, with exceptions of at most xO(1/M) composite integers that cannot be factored at all, and at most x exp −cM(loglog⁡x)3(logloglog⁡x)2 $\\\\begin{array}{} \\\\displaystyle \\\\left(-\\\\frac{c_M(\\\\log\\\\log x)^3}{(\\\\log\\\\log\\\\log x)^2}\\\\right) \\\\end{array}$ integers that cannot be factored completely. The problem of factoring square-free integers n is similarly reduced to that of computing a multiple D of ϕ(n), where D ≪ exp((log x)O(1)), with the exception of at most xO(1/M) integers that cannot be factored at all, in particular O(x1/M) integers of the form n = pq that cannot be factored.\",\"PeriodicalId\":43866,\"journal\":{\"name\":\"Journal of Mathematical Cryptology\",\"volume\":\"14 1\",\"pages\":\"346 - 358\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/jmc-2019-0023\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Cryptology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/jmc-2019-0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jmc-2019-0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 2

摘要

摘要我们描述了多项式时间(logx)M+O(1)中整数n≤x的因子分解问题的简化,以计算欧拉总函数,但最多xO(1/M)个完全不能因子分解的复合整数和最多xexp−cM(loglog⁡x) 3(logloglog⁡x) 2$\begin{array}{}\displaystyle\left(-\frac{c_M(\log\logx)^3}(\log\log\logx。因子分解无平方整数n的问题类似地简化为计算ξ(n)的倍数D的问题,其中D≪exp((log x)O(1)),除了最多不能被因子分解的xO(1/M)整数,特别是不能被因子化的形式为n=pq的O(x1/M)整数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integer factoring and compositeness witnesses
Abstract We describe a reduction of the problem of factorization of integers n ≤ x in polynomial-time (log x)M+O(1) to computing Euler’s totient function, with exceptions of at most xO(1/M) composite integers that cannot be factored at all, and at most x exp −cM(loglog⁡x)3(logloglog⁡x)2 $\begin{array}{} \displaystyle \left(-\frac{c_M(\log\log x)^3}{(\log\log\log x)^2}\right) \end{array}$ integers that cannot be factored completely. The problem of factoring square-free integers n is similarly reduced to that of computing a multiple D of ϕ(n), where D ≪ exp((log x)O(1)), with the exception of at most xO(1/M) integers that cannot be factored at all, in particular O(x1/M) integers of the form n = pq that cannot be factored.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Mathematical Cryptology
Journal of Mathematical Cryptology COMPUTER SCIENCE, THEORY & METHODS-
CiteScore
2.70
自引率
8.30%
发文量
12
审稿时长
100 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信