对偶函数分析性综述

IF 0.7 Q2 MATHEMATICS
Olgun Durmaz, Buşra Aktaş, Osman Keçilioğlu
{"title":"对偶函数分析性综述","authors":"Olgun Durmaz, Buşra Aktaş, Osman Keçilioğlu","doi":"10.31801/cfsuasmas.1035344","DOIUrl":null,"url":null,"abstract":"In this paper, the analyticity conditions of dual functions are clearly examined and the properties of the concept derivative are given in detail. Then, using the dual order relation, the dual analytic regions of dual analytic functions are constructed such that a collection of these regions forms a basis on $D^n$. Finally, the equivalent of the inverse function theorem in dual space is given by a theorem and proved.","PeriodicalId":44692,"journal":{"name":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","volume":" ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An overview to analyticity of dual functions\",\"authors\":\"Olgun Durmaz, Buşra Aktaş, Osman Keçilioğlu\",\"doi\":\"10.31801/cfsuasmas.1035344\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the analyticity conditions of dual functions are clearly examined and the properties of the concept derivative are given in detail. Then, using the dual order relation, the dual analytic regions of dual analytic functions are constructed such that a collection of these regions forms a basis on $D^n$. Finally, the equivalent of the inverse function theorem in dual space is given by a theorem and proved.\",\"PeriodicalId\":44692,\"journal\":{\"name\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.31801/cfsuasmas.1035344\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Faculty of Sciences University of Ankara-Series A1 Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31801/cfsuasmas.1035344","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

本文明确地检验了对偶函数的可分析性条件,并详细地给出了概念导数的性质。然后,利用对偶阶关系,构造对偶分析函数的对偶分析区域,使得这些区域的集合在$D^n$上形成基础。最后,用一个定理给出了对偶空间中反函数定理的等价性,并加以证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An overview to analyticity of dual functions
In this paper, the analyticity conditions of dual functions are clearly examined and the properties of the concept derivative are given in detail. Then, using the dual order relation, the dual analytic regions of dual analytic functions are constructed such that a collection of these regions forms a basis on $D^n$. Finally, the equivalent of the inverse function theorem in dual space is given by a theorem and proved.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
61
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信